Annals of Biomedical Engineering

, Volume 28, Issue 5, pp 556–564 | Cite as

Enhancing the Uptake of Chemotherapeutic Drugs into Tumors using an “Artificial Lymphatic System”

  • Gene R. DiResta
  • Jongbin Lee
  • John H. Healey
  • Steven M. Larson
  • Ehud Arbit


This paper presents findings from uptake studies to evaluate the ability of an “artificial lymphatic system” (ALS) to enhance large and small molecular weight drug transport into solid tumors and the therapeutic effect of the additional drug on their growth. These studies also served to test the effectiveness of an implantable multidrain ALS. Walker 256, Neuroblastoma, and Sarcoma dual-tumor models were used to evaluate the effect of ALS aspiration on the uptake of 3F8 monoclonal antibody, and doxorubicin. A tumor shrinkage experiment using Walker 256 dual tumors was used to evaluate the efficacy of an implantable ALS with cyclophosphamide chemotherapy. Drug uptake significantly increased in all aspirated tumors; 3F8 uptake was enhanced 37.4% in the Walker and 93.1% in the Neuroblastoma tumor lines (p < 0.05). Doxorubicin uptake increased 23.2%; in Sarcoma tumor (p < 0.05). The shrinkage study demonstrated that one-drain aspirated tumors shrank 90% faster (p < 0.01) than control tumors, while three-drain aspirated tumors shrank 123% faster than control tumors (p < 0.01). © 2000 Biomedical Engineering Society.

PAC00: 8719Tt, 8719Xx, 8780-y, 8719Uv

Interstitial fluid pressure Artificial lymphatic system Walker 256 Sarcoma 3F8 NMB-7 Neuroblastoma Doxorubicin Monoclonal antibody Cyclophosphamide 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baxter, L. T., and R. K. Jain. Transport of fluid and macro-molecules in tumors: I. Role of interstitial pressure and con-vection. Microvasc. Res. 37:77–104, 1989.Google Scholar
  2. 2.
    Boucher, Y., L. T. Baxter, and R. K. Jain. Interstitial pressure gradients in tissue-isolated and subcutaneous tumors: Impli-cations for therapy. Cancer Res. 50:4478–4484, 1990.Google Scholar
  3. 3.
    Cheung, N. K., B. Landmeier, J. Neely, A. D. Nelson, C. Abramowsky, S. Ellery, R. B. Adams, and F. Miraldi. Com-plete tumor ablation with iodine 131-I radiolabeled disialo-ganglioside GD2-specific monoclonal antibody against hu-man neuroblastoma xenograft in nude mice. J. Natl. Cancer Inst. 77:739–746, 1986.Google Scholar
  4. 4.
    Cheung, N. K., J. Neely, B. Landmeier, and D. Nelson. Targeting of ganglioside GD2 monoclonal antibody to neu-roblastoma. J. Nucl. Med. 28:1577–1583, 1987.Google Scholar
  5. 5.
    Cheung, N. K., K. Pentlow, M. C. Graham, S. J. Yeh, R. D. Finn, and S. M. Larson. Radiation absorbed dose and tumor response during therapy with Iodine-131 conjugated 3F8 monoclonal antibody. Fifth International Radiopharmaceuti-cal Dosimetry Symposium, Oak Ridge Associated Universi-ties, 1992, pg. 95–112.Google Scholar
  6. 6.
    DiResta, G. R., J. Lee, J. H. Healey, A. Levchenko, S. M. Larson, and E. Arbit. “Artificial lymphatic system:” A new approach to reduce interstitial hypertension and increase blood flow, pH and pO2 in solid tumors. Ann. Biomed. Eng. 28:543–555, 2000.Google Scholar
  7. 7.
    DiResta, G. R., J. Lee, S. M. Larson, and E. Arbit. Charac-terization of neuroblastoma xenograft in rat flank, I. Growth, interstitial fluid pressure, and interstitial fluid velocity distri-bution profiles. Microvasc. Res. 46:158–177, 1993.Google Scholar
  8. 8.
    Donelli, M. G., A. Guaitani, L. Torti, G. Damia, F. Corti, M. Bianchi, M. Tortoreto, C. Pantarotto, and I. Bartosek. Differ-ent sensitivity of two Walker 256 carcinoma lines to cyclo-phosphamide: Correlation with drug distribution, biotransfor-mation, and macromolecule binding. Oncology 43:257–263, 1986.Google Scholar
  9. 9.
    Jain, R. K., and L. T. Baxter. Mechanisms of heterogeneous distribution of monoclonal antibodies and other macromol-ecules in tumors: Significance of elevated interstitial pressure. Cancer Res. 48:7022–7032, 1988.Google Scholar
  10. 10.
    Jain, R. K. Commentary: Delivery of novel therapeutic agents in tumors: Physiological barriers and strategies. J. Natl. Cancer Inst. 81:570–576, 1989.Google Scholar
  11. 11.
    Jain, R. K. Barriers to drug delivery in solid tumors. Sci. Am., 58–65, 1994.Google Scholar
  12. 12.
    Jain, R. K. Vascular and interstitial barriers to delivery of therapeutic agents in tumors. Cancer Metastasis Rev. 9:253–260, 1990.Google Scholar
  13. 13.
    Wang, H. Y., S. Hochwald, B. Ng, and M. Burt. Regional chemotherapy via pulmonary artery with blood flow occlu-sion in a solitary tumor nodule model. Anticancer Res. 16:3749–3754, 1996.Google Scholar
  14. 14.
    Zar, J. H. Biostatistical Analysis, Prentice Hall, 1974.Google Scholar

Copyright information

© Biomedical Engineering Society 2000

Authors and Affiliations

  • Gene R. DiResta
    • 1
  • Jongbin Lee
    • 2
  • John H. Healey
    • 1
  • Steven M. Larson
    • 2
  • Ehud Arbit
    • 3
  1. 1.Department of Surgery/Orthopaedic ServiceMemorial Sloan Kettering Cancer Center'sUSA
  2. 2.Nuclear Medicine Research LaboratoryMemorial Sloan Kettering Cancer CenterNew York
  3. 3.Department of SurgeryStaten Island University Medical Center'sNew York

Personalised recommendations