Advertisement

Annals of Biomedical Engineering

, Volume 28, Issue 5, pp 543–555 | Cite as

“Artificial Lymphatic System”: A New Approach to Reduce Interstitial Hypertension and Increase Blood Flow, pH and pO2 in Solid Tumors

  • Gene R. DiResta
  • Jongbin Lee
  • John H. Healey
  • Andrey Levchenko
  • Steven M. Larson
  • Ehud Arbit
Article

Abstract

A mechanical drainage system, the “artificial lymphatic system” (ALS), consisting of a vacuum source and drain, is evaluated for its ability to aspirate the interstitial fluids responsible for the elevated interstitial fluid pressure (IFP) observed in solid tumors. IFP, pH, and pO2 radial profiles were measured before and after aspiration using wick-in-needle (WIN) probes, needle pH and oxygen electrodes, respectively. Laser Doppler flowmetry measured temporal changes in blood flow rate (BFR) at the tumor surface during aspiration. The WIN probe and IFP profile data were analyzed using numerical simulation and distributed mathematical models, respectively. The model parameter, pE reflecting central tumor IFP, was reduced from 15.3 to 5.7 mm Hg in neuroblastoma and from 13.3 to 12.1 mm Hg in Walker 256, respectively, following aspiration. The simulation demonstrated that spatial averaging inherent in WIN measurements reduced the calculated magnitude of the model parameter changes. IFP was significantly lower (p < 0.05), especially in regions surrounding the drain, and BFR was significantly higher (p < 0.05) following 25 and 45 min of aspiration, respectively; pH and pO2 profiles increased following aspiration. The experimental and mathematical findings suggest that ALS aspiration may be a viable way of reducing IFP and increasing BFR, pO2 and pH and should enhance solid tumor chemo and radiation therapy. © 2000 Biomedical Engineering Society.

PAC00: 8719Tt, 8715Vv, 8719Uv, 8780-y, 8719Xx

Interstitial fluid pressure Artificial lymphatic system Walker 256 mammary carcinoma Monoclonal antibody 3F8 NMB-7 neuroblastoma Tumor blood flow pH and pO2

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Acker, J. C., M. W. Dewhirst, G. M. Honore, T. V. Samul-ski, J. A. Tucker, and J. R. Oleson. Blood perfusion mea-surements in human tumors: Evaluation of laser Doppler methods. Int. J. Hyperthermia 6(2):287–304, 1990.Google Scholar
  2. 2.
    Baxter, L. T., and R. K. Jain. Transport and macromolecules in tumors: II. Role of heterogeneous perfusion and lymphat-ics. Microvasc. Res. 40:246–263, 1990.Google Scholar
  3. 3.
    Baxter, L. T., and R. K. Jain. Transport of fluid and macro-molecules in tumors: I. Role of interstitial pressure and con-vection. Microvasc. Res. 37:77–104, 1989.Google Scholar
  4. 4.
    Bird, R. B., W. E. Stewart, and E. N. Lightfoot. Transport Phenomena. New York: John Wiley, 1960, pp. 739–740.Google Scholar
  5. 5.
    Boucher, Y., and R. K. Jain. Microvascular pressure is the principal driving force for interstitial hypertension in solid tumors: Implications for vascular collapse. Cancer Res. 52:5110–5114, 1992.Google Scholar
  6. 6.
    Boucher, Y., L. T. Baxter, and R. K. Jain. Interstitial pressure gradients in tissue-isolated and subcutaneous tumors: Impli-cations for therapy. Cancer Res. 50:4478–4484, 1990.Google Scholar
  7. 7.
    Butler, T. P., F. H. Grantham, and P. M. Gullino. Bulk transfer of fluid in the interstitial compartment of mammary tumors. Cancer Res. 35:3084–3088, 1975.Google Scholar
  8. 8.
    Cheung, N. K., B. Landmeier, J. Neely, A. D. Nelson, C. Abramowsky, S. Ellery, R. B. Adams, and F. Miraldi. Com-plete tumor ablation with iodine 131-radiolabled disialogan-glioside GD2-specific monoclonal antibody against human neuroblastoma xenograft in nude mice. J. Natl. Cancer Inst. 77:739–746, 1986.Google Scholar
  9. 9.
    Cheung, N. K., J. Neely, B. Landmeier, and D. Nelson. Targeting of ganglioside GD2 monoclonal antibody to neu-roblastoma. J. Nucl. Med. 28:1577–1583, 1987.Google Scholar
  10. 10.
    Dillehay, L. E. Decreasing resistance during fast infusion of a subcutaneous tumor. Anticancer Res. 17(1A):461–466, 1997.Google Scholar
  11. 11.
    DiResta, G. R., J. Lee, S. M. Larson, and E. Arbit. Charac-terization of neuroblastoma xenograft in rat flank, I. Growth, interstitial fluid pressure, and interstitial fluid velocity distri-bution profiles. Microvasc. Res. 46:158–177, 1993.Google Scholar
  12. 12.
    DiResta, G. R., J. W. Kiel, G. L. Riedel, P. Kaplan, and A. P. Shepherd. Hybrid blood flow probe for simultaneous H2 clearance and laser-Doppler velocimetry. Am. J. Physiol. 253:G573-G581, 1987.Google Scholar
  13. 13.
    Fadnes, H. O., R. K. Reed, and K. Auckland. Interstitial fluid pressure in rats measured with a modified wick technique. Microvasc. Res. 14:27–36, 1977.Google Scholar
  14. 14.
    Fung, Y. C. Fluid Movement in Interstitial Spaces, Biome-chanics: Motion, Flow, Stress and Growth. New York: Springer, 1990, p. 320.Google Scholar
  15. 15.
    Gutmann, R., M. Leunig, J. Feyh, A. E. Goetz, K. Messmer, E. Kastenbauer, and R. K. Jain. Interstitial hypertension in head and neck tumors in patients: Correlation with tumor size. Cancer Res. 52:1993–1995, 1992.Google Scholar
  16. 16.
    Huang, Y., D. Rumschitzki, S. Chien, and S. Weinbaum. A fiber matrix model for the filtration through fenestral pores in a compressible arterial intima. Am. J. Physiol. 272: ( Heart Circ Physiol 41) H2023-H2039, 1997.Google Scholar
  17. 17.
    Jain, R. K. Commentary: Delivery of novel therapeutic agents in tumors: Physiological barriers and strategies. J. Natl. Cancer Inst. 81:570–576, 1989.Google Scholar
  18. 18.
    Jain, R. K. Barriers to drug delivery in solid tumors. Sci. Am.:58 65, 1994.Google Scholar
  19. 19.
    Jain, R. K. Transport of molecules in the tumor interstitium: A Review. Cancer Res. 47:3039–3051, 1987.Google Scholar
  20. 20.
    Jain, R. K. Tumor blood flow response to heat and pharma-cological agents. Proceedings of the Eighth International Conference on Radiation Research. London: Taylor and Fran-cis, 1987, Vol. 2, pp. 813–818.Google Scholar
  21. 21.
    Jain, R. K. Vascular and interstitial barriers to delivery of therapeutic agents in tumors. Cancer Metastasis Rev. 9:253–260, 1990.Google Scholar
  22. 22.
    Jain, R. K., and L. T. Baxter. Mechanisms of heterogeneous distribution of monoclonal antibodies and other macromol-ecules in tumors: Significance of elevated interstitial pressure. Cancer Res. 48:7022–7032, 1988.Google Scholar
  23. 23.
    Kiefer, J. Biological Radiation Effects. New York: Springer, 1990, pp. 157–174.Google Scholar
  24. 24.
    Kozen, S. V., M. B. Borisov, T. Hasegawa, S. K. Ha-kawa, and Y. Tanaka. Comparison of tumor blood flow changes induced by step-up and step-down heating. Int. J. Hyperther-mia 12(1):139–146, 1996.Google Scholar
  25. 25.
    Lai-Fook, S. J., and L. V. Brown. Effects of electric charge on hydraulic conductivity of pulmonary interstitium. J. Appl. Physiol. 70(5):1928–1932, 1991.Google Scholar
  26. 26.
    Lavie, E., D. L. Hirschberg, G. Schreiber, K. Thor, L. Hill, I. Hellstrom, and K. E. Hellstrom. Monoclonal antibody L6-daunomycin conjugates constructed to release free drug at the lower pH of tumor tissue. Cancer Immunology, Immunother. 33(4):223–30, 1991.Google Scholar
  27. 27.
    Leunig, M., A. E. Goetz, M. Dellian, G. Zetterer, F. Gama-rra, R. K. Jain, and K. Messmer. Interstitial fluid pressure in solid tumors following hyperthermia: Possible correlation with therapeutic response. Cancer Res. 52:487–490, 1992.Google Scholar
  28. 28.
    Netti, P. A., L. T. Baxter, Y. Boucher, R. Skalak, and R. K. Jain. Macro-and microscopic fluid transport in living tissues: Application to solid tumors. AIChE J. 43(3):818–834, 1997.Google Scholar
  29. 29.
    Netti, P. A., L. T. Baxter, Y. Boucher, R. Skalak, and R. K. Jain. Time-dependent behavior of interstitial fluid pressure in solid tumors: Implications for drug delivery. Cancer Res. 55:5451–5458, 1995.Google Scholar
  30. 30.
    Oshima, T., and Y. Tanaka. Effect of hydralazine on the blood flow of normal and tumor tissues in hyperthermia. Nippon Igaku Hoshasen Zasshi-Nippon Acta Radiologica. 53(8):960–9, 1993.Google Scholar
  31. 31.
    Roh, H. D., Y. Boucher, S. Kalnicki, R. Buchsbaum, W. D. Bloomer, and R. K. Jain. Interstitial hypertension in carci-noma of uterine cervix in patients: Possible correlation with tumor oxygenation and response. Cancer Res. 51:6695–6698, 1991.Google Scholar
  32. 32.
    Shepherd, A. P., G. Reidel, J. Kiel, D. Haumschild, and L. Maxwell. Evaluation of an infrared laser Doppler blood flow-meter. Am. J. Physiol. 252:G832-G839, 1987.Google Scholar
  33. 33.
    Wiig, H., E. Tveit, R. Hultborn, R. K. Reed, and L. Weiss. Interstitial fluid pressure in DMBA-induced rat mammary tumors. Scand. J. Clin. Lab. Invest. 42:159–164, 1982.Google Scholar
  34. 34.
    Znati, C. A., M. Rosenstein, Y. Boucher, M. W. Epperly, W. D. Bloomer, and R. K. Jain. Effect of radiation on interstitial fluid pressure and oxygenation in a human tumor xenograft. Cancer Res. 56:964–968, 1996.Google Scholar

Copyright information

© Biomedical Engineering Society 2000

Authors and Affiliations

  • Gene R. DiResta
    • 1
  • Jongbin Lee
    • 2
  • John H. Healey
    • 1
  • Andrey Levchenko
    • 2
  • Steven M. Larson
    • 2
  • Ehud Arbit
    • 3
  1. 1.Department of Surgery/Orthopaedic ServiceMemorial Sloan Kettering Cancer Center'sUSA
  2. 2.Nuclear Medicine Research LaboratoryMemorial Sloan Kettering Cancer CenterNew York
  3. 3.Department of SurgeryStaten Island University Medical Center'sNew York

Personalised recommendations