Advertisement

Annals of Biomedical Engineering

, Volume 28, Issue 1, pp 26–38 | Cite as

Numerical Simulation of Oxygen Mass Transfer in a Compliant Curved Tube Model of a Coronary Artery

  • Yuchen Qiu
  • John M. Tarbell
Article

Abstract

Arterial wall transport of blood-borne oxygen is essential for superficial arterial wall metabolism. The unique geometry and hemodynamics of coronary arteries curved over the heart surface may alter the O2 transport pattern and lead to abnormalities of O2 tension at the inner wall (epicardial surface) which may contribute to atherogenesis. This study focused on O2 transport in a compliant model of a curved coronary artery. A three-dimensional finite element model with moving boundaries was setup to simulate physiological flow and O2 transport in coronary arteries. The full Navier–Stokes equations and the coupled conservation of species equation were solved simultaneously for typical coronary flow characteristics (aspect ratio=10, diameter variation=6%, mean Reynolds number=150, unsteadiness parameter=3, Schmidt number=2700). The results indicate a large difference in O2 wall flux (Sherwood number [Sh]) between the outside (Sh about 55) and inside (Sh about 2) walls and imply that O2 transport at the inner wall could be limited by the fluid phase. © 2000 Biomedical Engineering Society.

PAC00: 8719Uv, 8710+e

coronary artery oxygen atherosclerosis mass flux shear stress 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    al-Haboubi, H. A., and B. J. Ward. Microvascular permeability of the isolated rat heart to various solutes in well-oxygenated and hypoxic conditions. Int. J. Microcirculation: Clin. Exp.16:291-301, 1996.Google Scholar
  2. 2.
    Altobelli, S. A., and R. M. Nerem. An experimental study of coronary fluid mechanics. J. Biomech. Eng.107:16-23, 1985.Google Scholar
  3. 3.
    Asakura, T., and T. Karino. Flow pattern and spatial distribution of atherosclerotic lesion in human coronary arteries. Circ. Res.66:1045-1066, 1990.Google Scholar
  4. 4.
    Atabek, H. B., S. C. Ling, and D. J. Patel. Analysis of coronary flow fields in thoracotomized dogs. Circ. Eng.107:16-23, 1975.Google Scholar
  5. 5.
    Basmadjian, D.The effect of flow and mass transport in the thrombogenesis. Ann. Biomed. Eng.18:685-709, 1990.Google Scholar
  6. 6.
    Brogi, E., G. Schatteman, T. Wu, E. A. Kim, L. Varticovski, B. Keyt, and J. M. Isner. Hypoxia-induced paracrine regulation of vascular endothelial growth factor receptor expression. J. Clin. Invest.97:469-76, 1996.Google Scholar
  7. 7.
    Buerk, D. G., and T. K. Goldstick. Arterial wall oxygen consumption rate varies spatially. Am. J. Physiol.243:H948, 1982.Google Scholar
  8. 8.
    Caro, C. G., T. J. Pedley, R. C. Schroter, and W. A. Seed. The Mechanics of the Circulation, Oxford: Oxford University Press, 1978.Google Scholar
  9. 9.
    Chang, L. J., and J. M. Tarbell. A numerical study of flow in curved tubes simulation coronary arteries. J. Biomech.21:927-937, 1988.Google Scholar
  10. 10.
    Crawford, D. W., and D. H. Blankenhorn. Arterial wall oxygenation, oxyradicals, and atherosclerosis. Atherosclerosis (Berlin)89:97-108, 1991.Google Scholar
  11. 11.
    Dravid, A. N., K. A. Smith, E. W. Merrill, and P. L. T. Brain. Effect of secondary fluid motion on laminar flow heat transfer in helically coiled tube. AIChE. J.17:1114-1122, 1971.Google Scholar
  12. 12.
    Fischer, S., D. Renz, W. Schaper, and G. F. Karliczek. Effects of barbiturates on hypoxic cultures of brain derived microvascular endothelial cells. Brain Res.707:47-53, 1996.Google Scholar
  13. 13.
    Fox, B., and W. A. Seed. Location of early atheroma in the human coronary arteries. J. Biomech. Eng.103:208-212, 1981.Google Scholar
  14. 14.
    Friedman, M. H., O. J. Deters, F. F. Mark, C. B. Bargeson, and G. M. Hutchins. Arterial geometry affects hemodynamics: A potential risk factor for atherosclerosis. Atherosclerosis (Berlin)46:225-231, 1983.Google Scholar
  15. 15.
    Grone, H. J., M. Simon, and E. F. Grone. Expression of vascular endothelial growth factor in renal vascular disease and renal allografts. J. Pathol.177:259-67, 1995.Google Scholar
  16. 16.
    Grottum, P., A. Svindland, and L. Walloe. Localization of atherosclerotic lesions in the bifurcation of the main left coronary artery. Atherosclerosis (Berlin)47:55-62, 1983.Google Scholar
  17. 17.
    Kalb, C. E., and J. D. Seader. Heart and mass transfer phenomena for viscous flow in curved circular tubes. J. Heart Mass Transf.15:801-817, 1972.Google Scholar
  18. 18.
    Kondo, T., H. Kinouchi, M. Kawase, and T. Yoshimoto. Astroglial cells inhibit the increasing permeability of brain endothelial cell monolayer following hypoxia/reoxygenation. Neurosci. Lett.208:101-104, 1996.Google Scholar
  19. 19.
    Liu, C. Y., S. G. Eskin, and J. D. Hellums. The Oxygen Permeability of Cultured Endothelial Cell Monolayers. In: Oxygen Transport to Tissue, XV, New York; Plenum, 1992.Google Scholar
  20. 20.
    Liu, Y., S. R. Cox, T. Morita, and S. Kourembanas. Hypoxia regulates vascular endothelial growth factor gene expression in endothelial cells. Identification of a 5 ft enhancer. Circ. Res.77:638-643, 1995.Google Scholar
  21. 21.
    Moore, J. A., and C. R. Ethier. Oxygen mass transfer calculations in large arteries. J. Biomech. Eng.119:469-475, 1997.Google Scholar
  22. 22.
    Nerem, R. M.Atherogenesis: hemodynamics, vascular geometry, and the endothelium. Biorheology21:565-569, 1984.Google Scholar
  23. 23.
    Nichols, W. W., C. R. Conti, W. E. Walker, and W. R. Milnor. Input impedance at the systemic circulation in man. Circ. Res.40:451-458, 1977.Google Scholar
  24. 24.
    Patel, D. J., D. P. Schilder, and A. J. Mallos. Mechanical properties and dimensions of the major pulmonary arteries. J. Appl. Physiol.15:92-96, 1960.Google Scholar
  25. 25.
    Patel, D. J., and D. L. Fry. In situ pressure-radius-length measurements in ascending aorta of anesthetized dogs. J. Appl. Physiol.19:413-426, 1964.Google Scholar
  26. 26.
    Paul, R. J. Chemical energetics of vascular smooth muscle. Handbook of Physiology, The Cardiovascular system, vascular smooth muscle, 2, Bethesda, MD: American Physiological Society, 1980, p. 201, Chap. 9.Google Scholar
  27. 27.
    Perktold, K., R. M. Nerem, and R. O. Teter. A numerical calculation of flow in a curved tube model of the left main coronary artery. J. Biomech.24:175-189, 1991.Google Scholar
  28. 28.
    Perktold, K., G. Rappitsch, and E. Pernkopf. Arterial mass transport in curved tubes. Proceedings of the Summer Bioengineering Conference, Beaver Creek, CO, June, 1995.Google Scholar
  29. 29.
    Qiu, Y. C., and J. M. Tarbell. Numerical simulation of pulsatile flow in a compliant curved tube model of a coronary artery. ASME J. Biomech. Eng., 1999, to be published.Google Scholar
  30. 30.
    Sabbah, H. N., F. Kjaja, J. F. Brymer, E. T. Hawkins, and P. D. Stein. Radial velocity gradient in the right coronary artery of humans: Possible relevance to atheroslerosis. Arteriosclerosis Council Abstract, Arteriosclerosis (Berlin)3:483a, 1983.Google Scholar
  31. 31.
    Sabbah, H. N., F. J. Walburn, and P. D. Stein. Patterns of flow in the left coronary artery. J. Biomech. Eng.106:272-279, 1984.Google Scholar
  32. 32.
    Saito, H., and L. E. Scriven. Study of coating flow by the finite element method. J. Comp. Physiol.42:53, 1981.Google Scholar
  33. 33.
    Schneiderman, G. Arterial Wall Oxygen Transport System: Computer Simulation and Experimental Study, Including a Theoretical Analysis of Various Tissue Oxygen Microelectrodes. Northwestern University, PhD thesis, 1975.Google Scholar
  34. 34.
    Soh, W. Y., and S. A. Berger. Laminar entrance flow in a curved pipe. J. Fluid Mech.148:109-135, 1984.Google Scholar
  35. 35.
    Stein, T. R., J. C. Martin, and K. H. Keller. Steady-state oxygen transport through red blood cell suspensions. J. Appl. Physiol.31:397-402, 1971.Google Scholar
  36. 36.
    Wang, D. M., and J. M. Tarbell. Nonlinear analysis of flow in an elastic tube (artery): Steady streaming effects. J. Fluid Mech.239:341-358, 1992.Google Scholar
  37. 37.
    Wang, D. M., and J. M. Tarbell. Nonlinear analysis of oscillatory flow, with a nonzero mean, in an elastic tube (artery). J. Biomech. Eng.117:127-135, 1995.Google Scholar
  38. 38.
    Wang, D. M., and J. M. Tarbell. Influence of radial wall motion on mass transport in an elastic tube (artery). Proceedings of Summer Bioengineering Conference, Beaver Creek, CO, June, 1995.Google Scholar
  39. 39.
    Weston, M. W., and J. M. Tarbell. Wall shear rate measurements in an elastic curved artery model. Biorheology34:1-17, 1997.Google Scholar
  40. 40.
    Womersley, J. R.Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. J. Physiol. (London)127:553-563, 1955.Google Scholar

Copyright information

© Biomedical Engineering Society 2000

Authors and Affiliations

  • Yuchen Qiu
    • 1
  • John M. Tarbell
    • 1
  1. 1.Biomolecular Transport Dynamics Laboratory, Department of Chemical Engineering and The Bioengineering ProgramThe Pennsylvania State UniversityUniversity Park

Personalised recommendations