Annals of Biomedical Engineering

, Volume 31, Issue 11, pp 1327–1336 | Cite as

Mechanical Asymmetry in the Embryonic Chick Heart During Looping

  • Evan A. Zamir
  • Varahoor Srinivasan
  • Renato Perucchio
  • Larry A. Taber


Cardiac looping, which begins with ventral bending and rightward rotation of the primitive heart tube, is an essential morphogenetic event that occurs early in vertebrate development. The biophysical mechanism that drives this process is unknown. It has been speculated that increased stiffness along the dorsal side of the ventricle combined with an intrinsic cardiac force causes the heart to bend. There is no experimental support for this hypothesis, however, since little is known about regional mechanical properties of the heart during looping. We directly measured diastolic stiffness of the inner curvature (IC), outer curvature (OC), and dorsal–ventral sides of the stage 12 chick heart by microindentation. The IC of intact hearts was found to be significantly stiffer than either the OC or the sides, which were of similar stiffness. Isolated cardiac jelly, which is a thick, extracellular matrix compartment underlying the myocardium, was approximately an order of magnitude softer than intact hearts. The results of a computational model simulating the indentation experiments, combined with the stiffness measurements, suggests the regional variation in stiffness is due to the material properties of the myocardium. A second model shows that a relatively stiff IC may facilitate bending of the heart tube during looping. © 2003 Biomedical Engineering Society.

PAC2003: 8719Hh, 8719Rr, 8718La

Looping Morphogenesis Asymmetry Biomechanics Microindentation Stiffness Material properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.-Hassan, E., W. F. Heinz, M. D. Antonik, N. P. D'Costa, S. Nagaswaran, C. A. Schoenenberger, and J. H. Hoh. Relative microelastic mapping of living cells by atomic force microscopy. Biophys. J. 74:1564–1578, 1998.PubMedGoogle Scholar
  2. 2.
    Alford, P. W., and L. A. Taber. Regional epicardial strain in the embryonic chick heart during the early looping stages. J. Biomech. 36:1135–1141, 2003.Google Scholar
  3. 3.
    Butler, J. K. Experimental analysis of cardiac loop formation in the chick, MA thesis, University of Texas, 1952.Google Scholar
  4. 4.
    Daily, B., E. L. Elson, and G. I. Zahalak. Cell poking. Determination of the elastic area compressibility modulus of the erythrocyte membrane. Biophys. J. 45:671–682, 1984.Google Scholar
  5. 5.
    DeHaan, R. L. Development of form in the embryonic heart. An experimental approach. Circulation 35:821–833, 1967.Google Scholar
  6. 6.
    Duszyk, M., B. Schwab III, G. I. Zahalak, H. Qian, and E. L. Elson. Cell poking: Quantitative analysis of indentation of thick viscoelastic layers. Biophys. J. 55:683–690, 1989.Google Scholar
  7. 7.
    Flynn, M. E., A. S. Pikalow, R. S. Kimmelman, and R. L. Searls. Mechanism of cervical flexure formation in the chick. Anat. Embryol. 184:411–420, 1991.Google Scholar
  8. 8.
    Hamburger, V., and H. L. Hamilton. Series of normal stages in the development of the chick embryo. J. Morphol. 88:49–92, 1951.Google Scholar
  9. 9.
    Harvey, R. P. Cardiac looping—An uneasy deal with laterality. Dev. Biol. 9:101–108, 1998.Google Scholar
  10. 10.
    Itasaki, N., H. Nakamura, H. Sumida, and M. Yasuda. Actin bundles on the right side in the caudal part of the heart tube play a role in dextrolooping in the embryonic chick heart. Anat. Embryol. 183:29–39, 1991.Google Scholar
  11. 11.
    Itasaki, N., H. Nakamura, and M. Yasuda. Changes in the arrangement of actin bundles during heart looping in the chick embryo. Anat. Embryol. 180:413–420, 1989.Google Scholar
  12. 12.
    Lacktis, J. W., and F. J. Manasek. An analysis of deformation during a normal morphogenic event. In: Morphogenesis and Malformation of the Cardiovascular System, edited by G. C. Rosenquist and D. Bergsma. New York: Alan R. Liss, 1978, pp. 205–227.Google Scholar
  13. 13.
    Lin, D. H., and F. C. Yin. Multiaxial constitutive law for mammalian left ventricular myocardium in steady-state barium contracture or tetanus. J. Biomech. Eng. 120:504–517, 1998.Google Scholar
  14. 14.
    Lin, Q., J. Schwarz, C. Bucana, and E. N. Olson. Control of mouse cardiac morphogenesis and myogenesis by transcription factor MEF2C. Science 276:1404–1407, 1997.Google Scholar
  15. 15.
    Linask, K. K., X. Yu, Y. Chen, and M. D. Han. Directionality of heart looping: Effects of Pitx2c misexpression on flectin asymmetry and midline structures. Dev. Biol. 246:407–417, 2002.Google Scholar
  16. 16.
    Manasek, F. J., M. B. Burnside, and R. E. Waterman. Myocardial cell shape changes as a mechanism of embryonic heart looping. Dev. Biol. 29:349–371, 1972.PubMedGoogle Scholar
  17. 17.
    Manasek, F. J., R. R. Kulikowski, A. Nakamura, Q. Nguyehphuc, and J. W. Lacktis. Early heart development: A new model of cardiac morphogenesis. In: Growth of the Heart in Health and Disease, edited by Z. Radovan. New York: Raven, 1984, pp. 105–130.Google Scholar
  18. 18.
    Manasek, F. J., and R. G. Monroe. Early cardiac morphogenesis is independent of function. Dev. Biol. 27:584–588, 1972.Google Scholar
  19. 19.
    Manner, J. Cardiac looping in the chick embryo: A morphological review with special reference to terminological and biomechanical aspects of the looping process. Anat. Rec. 259:248–262, 2000.Google Scholar
  20. 20.
    Mercola, M. Embryological basis for cardiac left-right asymmetry. Semin. Cell Dev. Biol. 10:109–116, 1999.Google Scholar
  21. 21.
    Miller, C. E., M. A. Vanni, and B. B. Keller. Characterization of passive embryonic myocardium by quasilinear viscoelasticity theory. J. Biomech. 30:985–988, 1997.Google Scholar
  22. 22.
    Nakamura, A., and F. J. Manasek. Experimental studies of the shape and structure of isolated cardiac jelly. J. Embryol. Exp. Morphol. 43:167–183, 1978.Google Scholar
  23. 23.
    Radmacher, M. Measuring the elastic properties of biological samples with the AFM. IEEE Eng. Med. Biol. Mag. 16:47–57, 1997.Google Scholar
  24. 24.
    Riley, P. R., M. Gertsenstein, K. Dawson, and J. C. Cross. Early exclusion of handl-deficient cells from distinct regions of the left ventricular myocardium in chimeric mouse embryos. Dev. Biol. 227:156–168, 2000.Google Scholar
  25. 25.
    Shiraishi, I., T. Takamatsu, and S. Fujita. Three-dimensional observation with a confocal scanning laser microscope of fibronectin immunolabeling during cardiac looping in the chick embryo. Anat. Embryol. 191:183–189, 1995.Google Scholar
  26. 26.
    Srinivasan, R., and R. Perucchio. Finite element analysis of anisotropic nonlinear incompressible elastic solids by a mixed model. Int. J. Numer. Methods Eng. 37:3075–3092, 1994.Google Scholar
  27. 27.
    Taber, L. A. Biomechanics of growth, remodeling, and morphogenesis. Appl. Mech. Rev. 48:487–545, 1995.Google Scholar
  28. 28.
    Taber, L. A., N. Hu, T. Pexieder, E. B. Clark, and B. B. Keller. Residual strain in the ventricle of stages 16–24 chick embryos. Circ. Res. 72:455–462, 1993.Google Scholar
  29. 29.
    Taber, L. A., I. E. Lin, and E. B. Clark. Mechanics of cardiac looping. Dev. Dyn. 203:42–50, 1995.Google Scholar
  30. 30.
    Taber, L. A., and R. Perucchio. Modeling heart development. J. Elast. 61:165–197, 2000.Google Scholar
  31. 31.
    Taber, L. A., H. Sun, E. B. Clark, and B. B. Keller. Epicardial strains in embryonic chick ventricle at stages 16–24. Circ. Res. 75:896–903, 1994.Google Scholar
  32. 32.
    Thomas, T. H., H. Yamagishi, P. A. Overbeek, E. N. Olson, and D. Srivastava. The bHLH factors, dHAND and eHAND, specify pulmonary and systemic cardiac ventricles independent of left–right sidedness. Dev. Biol. 196:228–236, 1998.Google Scholar
  33. 33.
    Tsuda, T., N. Philp, M. H. Zile, and K. K. Linask. Left–right asymmetric localization of flectin in the extracellular matrix during heart looping. Dev. Biol. 173:39–50, 1996.Google Scholar
  34. 34.
    Voronov, D. A., and L. A. Taber. Cardiac looping in experimental conditions: Effects of extraembryonic forces. Dev. Dyn. 224:413–421, 2002.Google Scholar
  35. 35.
    Xie, W., and R. Perucchio. Multiscale finite element modeling of the trabeculated embryonic heart: Numerical evaluation of the constitutive relations for the trabeculated myocardium. Comput. Methods Biomech. Biomed. Eng. 4:231–248, 2001.Google Scholar

Copyright information

© Biomedical Engineering Society 2003

Authors and Affiliations

  • Evan A. Zamir
    • 1
  • Varahoor Srinivasan
    • 2
  • Renato Perucchio
    • 2
  • Larry A. Taber
    • 1
  1. 1.Department of Biomedical EngineeringWashington UniversitySt. Louis
  2. 2.Department of Mechanical EngineeringUniversity of RochesterRochester

Personalised recommendations