Annals of Biomedical Engineering

, Volume 31, Issue 10, pp 1287–1296 | Cite as

Incremental Mechanics of Collagen Gels: New Experiments and a New Viscoelastic Model

  • Kenneth M. Pryse
  • Ali Nekouzadeh
  • Guy M. Genin
  • Elliot L. Elson
  • George I. Zahalak


Paired incremental uniaxial step (i.e., relaxation) and ramp tests were conducted simultaneously on four (nominally) identical samples of type I collagen gel, over a direct strain range 0 < ɛ < 0.2. The paired step and ramp responses could not both be predicted by a simple viscoelastic constitutive relation (either linear or Fung-type), but could be predicted reasonably accurately by a general nonlinear viscoelastic relation with a strain-dependent relaxation spectrum, of the form \(\sigma (t){} = \int {_{ - \infty}^t g(t - \tau ;\varepsilon )} [d\varepsilon (\tau )/d\tau ]d\tau .\) Based on a four-term exponential-series approximation, we measured the stiffness moduli and time constants of the relaxation function, g(t,\varepsilon ), for the four gel samples that we tested, and found that the time constants were independent of strain but the moduli increased strongly with strain. Further, we found that the time constants did not vary across the four gels, but the moduli varied by a factor of about 2 across the gels. Some additional tests show features of the response of collagen gels to cycles of application and removal of loading. © 2003 Biomedical Engineering Society.

PAC2003: 8380Kn, 8270Gg, 8715La

Hysteresis Relaxation spectrum Time constants Tangent stiffnesses Viscoelastic modeling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alberts, B., D. Bray, J. Lewis, M. Raff, K. Roberts, and J. D. Watson, Molecular Biology of the Cell, 3rd ed. New York: Garland, 1994.Google Scholar
  2. 2.
    Birk, D. E., E. I. Zycband, S. Woodruff, D. A. Winkelmann, and R. L. Trelstad. Collagen fibrillogenesis: Fibril segments become long fibrils as the developing tendon matures. Dev. Dyn. 208:291–298, 1997.Google Scholar
  3. 3.
    Brightman, A. O., B. P. Rajwa, J. E. Sturgis, M. E. McCallister, J. P. Robinson, and S. L. Voytik-Harbin. Time-lapse confocal reflection microscopy of collagen fibrillogenesis and extracellular matrix assembly. Biopolymers54:222–234, 2000.Google Scholar
  4. 4.
    Christiansen, D. L., E. K. Huang, and F. H. Silver. Assembly of type I collagen: Fusion of fibril subunits and the influence of fibril diameter on mechanical properties. Matrix Biol. 19:409–420, 2000.Google Scholar
  5. 5.
    Fung, Y. C. Stress-strain-history relations of soft tissues in simple elongation. In: Biomechanics: Its Foundations and Objectives, edited by Y. C. Fung, N. Perrone, and M. Anliker. Englewood Cliffs, NJ: Prentice-Hall, 1972.Google Scholar
  6. 6.
    Fung, Y. C. Biomechanics: Mechanical Properties of Living Tissues, 2nd. ed. New York: Springer, 1993.Google Scholar
  7. 7.
    Kolodney, M. S., and E. L. Elson. Correlation of myosin light chain phosphorylation with isometric contraction of fibroblasts. J. Biol. Chem. 268:23850–23855, 1993.Google Scholar
  8. 8.
    Ozerdem, B., and A. Tozeren. Physical response of collagen gels to tensile strain. J. Biomech. Eng. 117:397–401, 1995.Google Scholar
  9. 9.
    Parsons, J. W., and R. N. Coger. A new device for measuring the viscoelastic properties of hydrated matrix gels. J. Biomech. Eng. 124:145–154, 2002.Google Scholar
  10. 10.
    Pins, G. D., D. L. Christiansen, R. Patel, and F. H. Silver. Self-assembly of collagen fibers. Influence of fibrillar alignment and decorin on mechanical properties. Biophys. J. 73:2164–2172, 1997.Google Scholar
  11. 11.
    Roeder, B. A., K. Kokini, J. E. Sturgis, J. P. Robinson, and S. L. Voytik-Harbin. Tensile mechanical properties of three-dimensional type I collagen extracellular matrices with varied microstructure. J. Biomech. Eng. 124:214–222, 2002.Google Scholar
  12. 12.
    Setton, L. A., W. Zhu, and V. C. Mow. The biphasic poroviscoelastic behavior of articular cartilage: Role of the surface zone in governing the compressive behavior. J. Biomech. 26:581–592, 1993.Google Scholar
  13. 13.
    Silver, F. H., D. L. Christiansen, P. B. Snowhill, and Y. Chen. Transition from viscous to elastic-based dependency of mechanical properties of self-assembled type I collagen fibers. J. Appl. Polym. Sci. 79:134–142, 2000.Google Scholar
  14. 14.
    Wagenseil, J. E., T. Wakatsuki, R. J. Okamoto, G. I. Zahalak, and E. L. Elson. One-dimensional viscoelastic behavior of fibroblast-populated collagen matrices. (in press).Google Scholar
  15. 15.
    Wakatsuki, T., M. S. Kolodney, G. I. Zahalak, and E. L. Elson. Cell mechanics studied by a reconstituted model tissue. Biophys. J. 79:2353–2368, 2000.Google Scholar
  16. 16.
    Zahalak, G. I., J. E. Wagenseil, T. Wakatsuki, and E. L. Elson. A cell-based constitutive relation for bio-artificial tissues. Biophys. J. 79:2369–2381, 2000.Google Scholar

Copyright information

© Biomedical Engineering Society 2003

Authors and Affiliations

  • Kenneth M. Pryse
    • 1
  • Ali Nekouzadeh
    • 2
  • Guy M. Genin
    • 2
  • Elliot L. Elson
    • 1
  • George I. Zahalak
    • 2
  1. 1.Department of Biochemistry and Molecular BiophysicsWashington UniversitySt. Louis
  2. 2.Department of Mechanical EngineeringWashington UniversitySt. Louis

Personalised recommendations