Annals of Biomedical Engineering

, Volume 31, Issue 7, pp 823–839 | Cite as

Preliminary Model of Fluid and Solute Distribution and Transport During Hemorrhage

  • C. C. Gyenge
  • B. D. Bowen
  • R. K. Reed
  • J. L. Bert
Article

Abstract

The distribution and transport of fluid, ions, and other solutes (plasma proteins and glucose) are described in a mathematical model of unresuscitated hemorrhage. The model is based on balances of each material in both the circulation and its red blood cells, as well as in a whole-body tissue compartment along with its cells. Exchange between these four compartments occurs by a number of different mechanisms. The hemorrhage model has as its basis a validated model, due to Gyenge et al.,18 of fluid and solute exchange in the whole body of a standard human. Hypothetical but physiologically based features such as glucose and small ion releases along with cell membrane changes are incorporated into the hemorrhage model to describe the system behavior, particularly during larger hemorrhages. Moderate (10%–30% blood volume loss) and large (>30% blood loss) hemorrhage dynamics are simulated and compared with available data. The model predictions compare well with the available information for both types of hemorrhages and provide a reasonable description of the progression of a large hemorrhage from the compensatory phase through vascular collapse. © 2003 Biomedical Engineering Society.

PAC2003: 8710+e, 8719Uv

Hemorrhage Mathematical model Glucose release Small solute release Blood volume restitution Plasma osmolarity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Altman, P. L., and D. S. Dittmer. Respiration and Circulation. Biological Handbooks. Bethesda, MD: Federation of American Societies for Experimental Biology, 1971.Google Scholar
  2. 2.
    Aukland, K., and G. Nicolaysen. Interstitial fluid volume: Local regulatory mechanisms. Physiol. Rev.61:556–638, 1981.Google Scholar
  3. 3.
    Barnea, O., and N. Sheffer. A computer model for analysis of fluid resuscitation. Comput. Biol. Med.23:443–454, 1993.Google Scholar
  4. 4.
    Bert, J. L., C. C. Gyenge, B. D. Bowen, R. K. Reed, and T. Lund. Fluid resuscitation following a burn injury: Implication of a mathematical model of microvascular exchange. Burns23:93–105, 1997.Google Scholar
  5. 5.
    Bert, J. L., C. C. Gyenge, B. D. Bowen, R. K. Reed, and T. Lund. A model of fluid and solute exchange in the human: Validation and implications. Acta Physiol. Scand.170:201–209, 2000.Google Scholar
  6. 6.
    Bessey, P. Q., D. C. Brooks, P. R. Black, T. T. Aoki, and D. W. Wilmore. Epinephrine acutely mediates skeletal muscle insulin resistance. Surgery (St. Louis)94:172–179, 1983.Google Scholar
  7. 7.
    Black, P. R., D. C. Brooks, P. Q. Bessey, R. R. Wolfe, and D. W. Wilmore. Mechanisms of insulin resistance following injury. Ann. Surg.196:420–433, 1982.Google Scholar
  8. 8.
    Borchelt, B. D., P. A. Wright, J. A. Evans, and D. S. Gann. Cell swelling and depolarization in hemorrhagic shock. J. Trauma39:187–193, 1995.Google Scholar
  9. 9.
    Cannon, P. J., D. S. Svahn, and F. D. Demartini. The influence of hypertonic saline infusions upon the fractional reabsorption of urate and other ions in normal and hypertensive man. CirculationXLI:97–108, 1970.Google Scholar
  10. 10.
    Carlson, D. E., M. D. Kligman, and D. S. Gann. Impairment of blood volume restitution after large hemorrhage: A mathematical model. Am. J. Physiol.270:R1163–R1177, 1996.Google Scholar
  11. 11.
    Cunningham, J. N., G. T. Shires, and Y. Wagner. Changes in intracellular sodium and potassium content of red blood cells in trauma and shock. Am. J. Surg.122:650–654, 1971.Google Scholar
  12. 12.
    Day, B., and S. M. Friedman. Red cell sodium and potassium in hemorrhagic shock measured by lithium substitution analysis. J. Trauma20:52–54, 1980.Google Scholar
  13. 13.
    Eastridge, B. J., J. A. Evans, D. N. Darlington, and D. S. Gann. Ferric ion potentiates cell depolarization by a circulating shock protein. Arch. Surg. (Chicago)129:245–251, 1994.Google Scholar
  14. 14.
    Friedman, S. G., F. J. Pearce, and W. R. Drucker. The role of blood glucose in defense of plasma volume during hemorrhage. J. Trauma22:86–91, 1982.Google Scholar
  15. 15.
    Gann, D. S., D. E. Carlson, G. J. Byrnes, J. C. Pirkle, Jr., and C. F. Allen-Rowlands. Impaired restitution of blood volume after large hemorrhage. J. Trauma21:598–603, 1981.Google Scholar
  16. 16.
    Gann, D. S., D. E. Carlson, G. J. Byrnes, J. C. Pirkle, Jr., and C. F. Allen-Rowlands. Role of solute in early restitution of blood volume after hemorrhage. Surgery (St. Louis)94:439–446, 1983.Google Scholar
  17. 17.
    Guyton, A. C. Textbook of Medical Physiology, 8th ed. Toronto: W. B. Saunders, 1991.Google Scholar
  18. 18.
    Gyenge, C. C., B. D. Bowen, R. K. Reed, and J. L. Bert. Transport of fluid and solutes in the body. I. Formulation of a mathematical model. Am. J. Physiol.277:H1215–H1227, 1999a.Google Scholar
  19. 19.
    Gyenge, C. C., B. D. Bowen, R. K. Reed, and J. L. Bert. Transport of fluid and solutes in the body. II. Model Validation. Am. J. Physiol.277:H1228–H1240, 1999b.Google Scholar
  20. 20.
    Gyenge, C. C., B. D. Bowen, R. K. Reed, and J. L. Bert. Mathematical model of renal elimination of fluid and small ions during hyper-and hypovolemic conditions. Acta Anaesthesiol. Scand.47:122–137, 2003.Google Scholar
  21. 21.
    Heltne, J. K., J. L. Bert, T. Lund, M.-E. Koller, M. Farstad, S. E. Rynning, and P. Husby. Temperature-related fluid extravasation during cardiopulmonary bypass: An analysis of filtration coefficients and transcapillary pressures. Acta Anaesthesiol. Scand.46:51–56, 2002.Google Scholar
  22. 22.
    Hultman, E.Effect of exercise of skeletal muscle's glycogen and potassium store, and on the carbohydrate metabolism of the liver. In: Studies on muscle metabolism of glycogen and active phosphate in man with special reference to exercise and diet. Scand. J. Clin. Lab Invest Suppl.94:1–63, 1967.Google Scholar
  23. 23.
    Illner, H., and G. T. Shires. The effect of hemorrhagic shock on potassium transport in skeletal muscle. Surg. Gynecol. Obstet.150:17–25, 1980.Google Scholar
  24. 24.
    Illner, H., J. N. Cunningham, and G. T. Shires. Red cell sodium content and permeability changes in hemorrhagic shock. Am. J. Surg.143:349–355, 1982.Google Scholar
  25. 25.
    Jarhult, J.Osmolar control of the circulation hemorrhagic hypotension. An experimental study in cat. Acta Physiol. Scand. Suppl.423:1–85, 1975.Google Scholar
  26. 26.
    Lewis, Jr., F. R.Prehospital intravenous fluid therapy: Physiologic computer modelling. J. Trauma26:804–811, 1986.Google Scholar
  27. 27.
    Mardel, S. N., S. H. Simpson, S. Kelly, R. Wytch, T. F. Beattie, and G. Menezes. Validation of a computer model of hemorrhage and transcapillary refill. Med. Eng. Phys.17:215–218, 1995.Google Scholar
  28. 28.
    Menguy, R., and Y. R. Masters. Influence of hyperglycemia on survival after hemorrhagic shock. Adv. Shock Res.1:43–54, 1979.Google Scholar
  29. 29.
    Mohsein, V., and A. B. DuBois. Intercompartmental fluid shifts due to glucose release during hemorrhage in rabbits. Am. J. Physiol.245:H143–H149, 1983.Google Scholar
  30. 30.
    Nakayama, S.-I., G. C. Kramer, R. C. Carlsen, and J. W. Holcroft. Infusion of very hypertonic saline to bled rats: Membrane potential and fluid shifts. J. Surg. Res.38:180–186, 1985.Google Scholar
  31. 31.
    Perl, W.Modified filtration-permeability model of transcapillary transport—A solution of the Pappenheimer pore puzzle?Microvasc. Res.3:233–251, 1971.Google Scholar
  32. 32.
    Pirkle, J. C., and D. S. Gann. Expansion of interstitial fluid is required for full restitution of blood volume after hemorrhage. J. Trauma16:937–947, 1976.Google Scholar
  33. 33.
    Shackford, S. R., C. H. Norton, and M. M. Todd. Renal, cerebral and pulmonary effects of hypertonic resuscitation in a porcine model of hemorrhagic shock. Surgery (St. Louis)104:553–560, 1988.Google Scholar
  34. 34.
    Sheffer, N., A. Hirshberg, and O. Barnea. Myocardial O2 balance during fluid resuscitation in uncontrolled hemorrhage: Computer model. J. Trauma42:647–651, 1997.Google Scholar
  35. 35.
    Simpson, S. H., G. Menezes, S. N. Mardel, S. Kelly, R. White, and T. Beattie. A computer model of major haemorrhage and resuscitation. Med. Eng. Phys.18:339–343, 1996.Google Scholar
  36. 36.
    Shires, G. T., J. N. Cunningham, C. R. F. Baker, S. F. Reeder, H. Illner, I. Y. Wagner, and B. S. Maher. Alterations in cellular membrane function during hemorrhagic shock in primates. Ann. Surg.176:288–295, 1972.Google Scholar
  37. 37.
    Sondeen, J. L., G. A. Gonzaludo, J. A. Loveday, G. E. Deshon, C. B. Clifford, M. M. Hunt, W. G. Rodkey, and C. E. Wade. Renal response to graded hemorrhage in conscious pig. Am. J. Physiol.259:R119–R125, 1990.Google Scholar
  38. 38.
    Tølløfsrud, S., T. Tonnessen, O. Skraastad, and H. Noddeland. Hypertonic saline and dextran in normovolemic and hypovolemic volunteers increases interstitial and intravascular fluid volumes. Acta Physiol. Scand.41:1–9, 1997.Google Scholar
  39. 39.
    Ware, J., O. Ljungquist, K.-A. Norberg, S. Efendic, and G. Nylander. Glucose, insulin and osmolality changes in rats sustaining different hemorrhage volumes. Acta Physiol. Scand.116:31–36, 1982.Google Scholar

Copyright information

© Biomedical Engineering Society 2003

Authors and Affiliations

  • C. C. Gyenge
    • 1
  • B. D. Bowen
    • 2
  • R. K. Reed
    • 1
  • J. L. Bert
    • 2
  1. 1.Department of PhysiologyUniversity of BergenBergenNorway
  2. 2.Department of Chemical and Biological EngineeringUniversity of British ColumbiaVancouverCanada

Personalised recommendations