Annals of Biomedical Engineering

, Volume 31, Issue 7, pp 879–890 | Cite as

Criteria for the Selection of Materials for Implanted Electrodes

  • L. A. Geddes
  • R. Roeder
Article

Abstract

There are four criteria that must be considered when choosing material for an implanted electrode: (1) tissue response, (2) allergic response, (3) electrode-tissue impedance, and (4) radiographic visibility. This paper discusses these four criteria and identifies the materials that are the best candidates for such electrodes. For electrodes that make ohmic contact with tissues: gold, platinum, platinum–iridium, tungsten, and tantalum are good candidates. The preferred insulating materials are polyimide and glass. The characteristics of stimulator output circuits and the importance of the bidirectional wave- form in relation to electrode decomposition are discussed. The paper concludes with an analysis, the design criteria, and the special properties and materials for capacitive recording and stimulating electrodes. © 2003 Biomedical Engineering Society.

PAC2003: 8754Dt, 8780Fe, 8768+z, 8719Nn

Implanted electrodes Microelectrodes Stimulating electrodes Electrode arrays Electrodes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aronson, S., and L. A. Geddes. Electrode potential stability. IEEE Trans. Biomed. Eng.32:85, 1987.Google Scholar
  2. 2.
    Babb, T. L., and W. Kupfer. Phagocytic and metabolic reactions to chronically implanted metal brain electrodes. Exp. Neurol.86:171–184, 1984.Google Scholar
  3. 3.
    Barranco, V. P., and H. Soloman. Eczematous dermatitis in nickel. J. Am. Med. Assoc.110:1244, 1972.Google Scholar
  4. 4.
    Batrow, J., and P. Batrow. Electro-physiotherapy apparatus. US Patent No. 3,077,884 (19 Feb. 1963).Google Scholar
  5. 5.
    Brummer, S. B., and M. J. Turner. Electrochemical considerations for safe electrical stimulation of the nervous system with platinum electrodes. IEEE Trans. Biomed. Eng.24:59–63, 1977.Google Scholar
  6. 6.
    Brummer, S. B., and L. S. Robblee. Criteria for selecting electrodes for electrical stimulation: Theoretical and practical. Ann. N.Y. Acad. Sci.0077/8923:159–170, 1983.Google Scholar
  7. 7.
    Campbell, P. K., K. F. Jones, R. J. Huber, K. W. Horch, and R. A. Normann. A silicon-based, three-dimensional neural interface. IEEE Trans. Biomed. Eng.38:758–768, 1991.Google Scholar
  8. 8.
    Collias, J. C., and E. E. Manuelidis. Histopathological changes produced by implanted electrodes in cat brains. J. Neurosurg.14:302–328, 1957.Google Scholar
  9. 9.
    Dodge, H. W., C. Petersen, C. W. Sem-Jacobsen, P. Sayre, and R. G. Bickford. The paucity of demonstrable brain damage following intracerebral electrography: Report of a case. Proc. Staff Meet. Mayo Clin.30:215–221, 1955.Google Scholar
  10. 10.
    Dymond, A. M., L. E. Kaechele, J. M. Jurist, and P. H. Crandall. Brain tissue reaction to some chronically implanted metals. J. Neurosurg.33:574–580, 1970.Google Scholar
  11. 11.
    Fischer, G., G. P. Sayre, and R. G. Bickford. Histologic changes in the cat's brain after introduction of metallic and plastic coated wire used in electroencephalography. Proc. Staff Meet. Mayo Clin.32:14–22, 1957.Google Scholar
  12. 12.
    Geddes, L. A., and R. Roeder. Measurement of the direct-current (Faradic) resistance of the electrode-electrolyte interface. Ann. Biomed. Eng.29:181–186, 2001.Google Scholar
  13. 13.
    Geddes, L. A., C. P. DaCosta, and G. Wise. The impedance of stainless-steel electrodes. Med. Biol. Eng.9:511–521, 1971.Google Scholar
  14. 14.
    Geddes, L. A.Evolution of circuit models for the electrode-electrolyte interface. Ann. Biomed. Eng.25:1–14, 1997.Google Scholar
  15. 15.
    Geddes, L. A., and L. E. Baker. Principles of Applied Biomedical Instrumentation, 3rd ed. New York: Wiley, 1989.Google Scholar
  16. 16.
    Geddes, L. A. Medical Device Accidents. Boca Raton, FL: CRC Press, 1998.Google Scholar
  17. 17.
    Geddes, L. A., M. Hinds, and K. S. Foster. Stimulation with capacitive electrodes. Med. Biol. Eng. Comput.25:359–360, 1987.Google Scholar
  18. 18.
    Geddes, L. A. Electrodes and the Measurement of Bioelectric Events. New York: Wiley-Interscience, 1972.Google Scholar
  19. 19.
    Hubel, D. H.Tungsten microelectrode for recording from single units. Science (Washington, DC, U.S.)125:549–550, 1950.Google Scholar
  20. 20.
    Jones, K. E., P. K. Campbell, and R. A. Norman. A glass/silicon composite intracortical array. Ann. Biomed. Eng.20:423–437, 1992.Google Scholar
  21. 21.
    Kohlrausch, F.über platinirte Elekroden und Widerstadsbestimmung. Ann. Phys. (Leipzig)60:315–332, 1897.Google Scholar
  22. 22.
    Lilly, J. C., J. R. Hughes, E. C. Alvord, and T. W. Gallin. Brief, noninjurious electrical stimulation of the brain. Science (Washington, DC, U.S.)121:468–469, 1955.Google Scholar
  23. 23.
    Loeb, C. E., and F. J. R. Richmond. BION Implants for Therapeutic and Functional Electrical Stimulation in Neural Prothesis for Restoration of Sensory and Motor Function, edited by J. K. Chapin and K. A. Moxon. Boca Raton, FL: CRC Press, 2001.Google Scholar
  24. 24.
    Lopez, A., and P. Richardson. Capacitive electrocardiographic and bioelectric electrodes. IEEE Trans. Biomed. Eng.16:99, 1969.Google Scholar
  25. 25.
    Maynard, E. M., C. T. Nordhausen, and R. A. Normann. The Utah intracortical electrode array. Ann. Biomed. Eng.20:423–437, 1992.Google Scholar
  26. 26.
    McHardy, J., D. Geller, and S. B. Brummer. An approach to corrosion control during electrical stimulation. Ann. Biomed. Eng.5:144–149, 1977.Google Scholar
  27. 27.
    Neural Prostheses, edited by W. F. Agnew and D. B. McCreery. Englewood Cliffs, NJ: Prentice Hall, 1990.Google Scholar
  28. 28.
    Radovsky, A. S., and J. S. Van Vlect. Effects of dexamethasone elution on tissue reaction around stimulating electrodes of endocardial pacing leads in dogs. Am. Heart J.117:1288–1298, 1989.Google Scholar
  29. 29.
    Ragheb, T., and L. A. Geddes. The polarization impedance of common electrode metals operated at low current density. Ann. Biomed. Eng.19:151–163, 1991.Google Scholar
  30. 30.
    Ray, C. D., R. G. Bickford, L. C. Clark, R. E. Johnston, T. M. Richards, D. Rogers, and W. E. Russert. A new multicontact, multipurpose brain depth probe. Proc. Staff Meet. Mayo Clin.40:771–804, 1965.Google Scholar
  31. 31.
    Richardson, P. C., F. K. Coombs, and R. M. Adams. Some new electrode techniques for long-term physiologic monitoring. Aerosp. Med.39:745–750, 1968.Google Scholar
  32. 32.
    Richardson, P. C., and F. K. Coombs. New construction techniques for insulated electrocardiographic electrodes. Proc. 21st Ann. Conf. Eng. Med. Biol. 10:13A.1, 1968.Google Scholar
  33. 33.
    Robinson, F. R., and M. T. Johnson, Histopathological studies of tissue reactions to various metals implanted in cat brains, ASD Tech Rept. 1961, pp. 61–397. USAF Wright-Patterson AFB, Ohio p. 13.Google Scholar
  34. 34.
    Schaldach, M., M. Hubmann, R. Hardt, and A. Weikl. Pacemaker electrodes made of titanium nitride. Biomed. Technik.34:185–190, 1989.Google Scholar
  35. 35.
    Schaldach, M. S.New pacemaker electrodes. Trans. Am. Soc. Artif. Intern. Organs17:29–35, 1971.Google Scholar
  36. 36.
    Schmidt, S., K. Horch, and R. Norman. Biocompatibility of silicon-based electrode arrays implanted in feline cortical tissue. J. Biomed. Mater. Res.27:1393–1399, 1993.Google Scholar
  37. 37.
    Schwan, H. P., and J. G. Maczuk. Electrode polarization: Limits of linearity. Proc. 18th Ann. Conf. Eng. Biol. Med., 1965.Google Scholar
  38. 38.
    Schwan, H. P. Determination of biological impedances. In: Physical Techniques in Biological Research.New York: Academic, 1963, Vol. V1B.Google Scholar
  39. 39.
    Stensaas, S. S., and L. J. Stensaas. Histopathological evaluation of materials implanted in the cerebral cortex. Acta Neuropathol. (Berl)41:145–155, 1978.Google Scholar
  40. 40.
    Stokes, K. B., G. A. Bornzin, and W. A. Weabusch. A steroid-electing, low-threshold, low polarizing electrode. In: Cardiac Pacing, edited by D. Steinkoff. Verlag: Darnstadt, 1983, p. 369.Google Scholar
  41. 41.
    White, R. L., and T. J. Gross. An evaluation of the resistance to electolysis for metals for use in biostimulation microprobes. IEEE Trans. Biomed. Eng.21:451–487, 1974.Google Scholar
  42. 42.
    Wise, K. D., and J. B. Angell. An integrated circuit approach to extracellular microelectrodes. Proc 8th Int. Conf. Med. Biol. Eng., 1969, paper No. 14–5.Google Scholar
  43. 43.
    Wolfson, R. N., and M. R. Neuman. Miniature Si–S1O2 insulated electrodes based on semiconductor technology. Proc. 8th Int. Conf. Med. Biol. Eng., Chicago, IL: Carl Gorr, 1969, paper No. 14–6.Google Scholar

Copyright information

© Biomedical Engineering Society 2003

Authors and Affiliations

  • L. A. Geddes
    • 1
  • R. Roeder
    • 1
  1. 1.Purdue UniversityDepartment of Biomedical EngineeringWest Lafayette

Personalised recommendations