Annals of Biomedical Engineering

, Volume 31, Issue 6, pp 733–740 | Cite as

Effects of a Fixation Screw on Trabecular Structural Changes in a Vertebral Body Predicted by Remodeling Simulation

  • Ken-ichi Tsubota
  • Taiji Adachi
  • Yoshihiro Tomita
Article

Abstract

Computational simulation of trabecular surface remodeling was conducted to investigate the effects of a spinal fixation screw on trabecular structural changes in a vertebral body. By using voxel-based finite elements, computational models of the bone and screw were constructed in two structural scales of a vertebral body with an implanted screw and a bone–screw interface. In the vertebral body, the implantation of the fixation screw caused changes in the mechanical environment in cancellous bone, leading to trabecular structural changes at the cancellous level. The effects of the screw on trabecular orientation were greater in the regions above and below the screw than in those in front of the screw. In the case of the bone–screw interface, trabecular structural changes depended on the direction of load applied to the screw. It was suggested that the bone resorption predicted in the pull-out loading case is a candidate cause of the loosening of the screw. The results indicate that the effects of the implanted screw on trabecular structural changes are more important for longer-term fixation. © 2003 Biomedical Engineering Society.

PAC2003: 8718Bb, 8719Rr, 8780Rb, 8710+e

Computational biomechanics Bone structural adaptation Trabecular surface remodeling Spinal fixation Bone implant Voxel-based finite element model Large-scale computation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adachi, T., Y. Tomita, H. Sakaue, and M. Tanaka. Simulation of trabecular surface remodeling based on local stress nonuniformity. JSME Int. J.40(C-4):782–792, 1997.Google Scholar
  2. 2.
    Adachi, T., K. Tsubota, Y. Tomita, and S. J. Hollister. Trabecular surface remodeling simulation for cancellous bone using microstructural voxel finite element models. Trans. ASME, J. Biomech. Eng.123(5):403–409, 2001.Google Scholar
  3. 3.
    An, Y. H. Mechanical properties of bone. In: Mechanical Testing of Bone and the Bone–Implant Interface, edited by Y. H. An and R. A. Draughn. Boca Raton, FL: CRC, 1999, pp. 41–63.Google Scholar
  4. 4.
    Beuf, O., D. C. Newitt, L. Mosekilde, and S. Majumdar. Trabecular structure assessment in lumbar vertebrae specimens using quantitative magnetic resonance imaging and relationship with mechanical competence. J. Bone Miner. Res.16(8):1511–1519, 2001.Google Scholar
  5. 5.
    Cowin, S. C.The relationship between the elasticity tensor and the fabric tensor. Mech. Mater.4:137–147, 1985.Google Scholar
  6. 6.
    Cowin, S. C., L. Moss-Salentijn, and M. L. Moss. Candidates for the mechanosensory system in bone. Trans. ASME, J. Biomech. Eng.113(2):191–197, 1991.Google Scholar
  7. 7.
    Dalenberg, D. D., M. A. Asher, R. G. Robinson, and G. Jayaraman. The effect of a stiff spinal implant and its loosening on bone mineral content in canines. Spine18(13):1862–1866, 1993.Google Scholar
  8. 8.
    Doblaré, M., and J. M. García. Application of an anisotropic bone-remodelling model based on a damage-repair theory to the analysis of the proximal femur before and after total hip replacement. J. Biomech.34(9):1157–1170, 2001.Google Scholar
  9. 9.
    Goel, V. K., S. A. Ramirez, W. Kong, and L. G. Gilbertson. Cancellous bone Young's modulus variation within the vertebral body of a ligamentous lumbar spine—Application of bone adaptive remodeling concepts. Trans. ASME, J. Biomech. Eng.117(3):266–271, 1995.Google Scholar
  10. 10.
    Guldberg, R. E., M. Richards, N. J. Caldwell, C. L. Kuelske, and S. A. Goldstein. Trabecular bone adaptation to variations in porous-coated implant topology. J. Biomech.30(2):147–153, 1997.Google Scholar
  11. 11.
    Hughes, T. J. R., R. M. Ferencz, and J. O. Hallquist. Large-scale vectorized implicit calculations in solid mechanics on a Cray X-MP/48 utilizing EBE preconditioned conjugate gradients. Comput. Methods Appl. Mech. Eng.61(2):215–248, 1987.Google Scholar
  12. 12.
    Huiskes, R., H. Weinans, H. J. Grootenboer, M. Dalstra, B. Fudala, and T. J. Slooff. Adaptive bone-remodeling theory applied to prosthetic-design analysis. J. Biomech.20(11/12):1135–1150, 1987.Google Scholar
  13. 13.
    Huiskes, R., and S. J. Hollister. From structure to process, from organ to cell: Recent developments of FE-analysis in orthopaedic biomechanics. Trans. ASME, J. Biomech. Eng.115(4B):520–527, 1993.Google Scholar
  14. 14.
    Kuiper, J. H., and R. Huiskes. Mathematical optimization of elastic properties: Application to cementless hip stem design. Trans. ASME, J. Biomech. Eng.119(2):166–174, 1997.Google Scholar
  15. 15.
    Lu, W. W., Q. Zhu, A. D. Holmes, K. D. Luk, S. Zhong, and J. C. Leong. Loosening of sacral screw fixation under fatigue loading. J. Orthop. Res.18(5):808–814, 2000.Google Scholar
  16. 16.
    Luo, G., A. M. Sadegh, H. Alexander, W. Jaffe, D. Scott, and S. C. Cowin. The effect of surface roughness on the stress adaptation of trabecular architecture around a cylindrical implant. J. Biomech.32(3):275–284, 1999.Google Scholar
  17. 17.
    McCullen, G. M., and S. R. Garfin. Spine update: Cervical spine internal fixation using screw and screw-plate constructs. Spine25(5):643–652, 2000.Google Scholar
  18. 18.
    Mosekilde, L. “Age-related loss of vertebral trabecular bone mass and structure—Biomechanical consequences.” In: Biomechanics of Diarthrodial Joints II, edited by V. C. Mow, A. Ratcliffe, and S. L-Y. Woo. New York: Springer, 1990, pp. 83–96.Google Scholar
  19. 19.
    Orr, T. E., G. S. Beaupré, D. R. Carter, and D. J. Schurman. Computer predictions of bone remodeling around porous-coated implants. J. Arthroplasty5(3):191–200, 1990.Google Scholar
  20. 20.
    Parfitt, A. M.Osteonal and hemi-osteonal remodeling: The spatial and temporal framework for signal traffic in adult human bone. J. Cell. Biochem.55(3):273–286, 1994.Google Scholar
  21. 21.
    Prendergast, P. J.Finite element models in tissue mechanics and orthopaedic implant design. Clin. Biomech.12(6):343–366, 1997.Google Scholar
  22. 22.
    van Rietbergen, B., R. Huiskes, H. Weinans, D. R. Sumner, T. M. Turner, and J. O. Galante. The mechanism of bone remodeling and resorption around press-fitted THA stems. J. Biomech.26(4/5):369–382, 1993.Google Scholar
  23. 23.
    van Rietbergen, B., H. Weinans, R. Huiskes, and A. Odgaard. A new method to determine trabecular bone elastic properties and loading using micromechanical finite-element models. J. Biomech.28(1):69–81, 1995.Google Scholar
  24. 24.
    van Rietbergen, B., S. Majumdar, W. Pistoia, D. C. Newitt, M. Kothari, A. Laib, and P. Rüegsegger. Assessment of cancellous bone mechanical properties from micro-FE models based on micro-CT, pQCT and MR images. Technol. Health Care6(5/6):413–420, 1998.Google Scholar
  25. 25.
    Sadegh, A. M., G. M. Luo, and S. C. Cowin. Bone ingrowth: An application of the boundary element method to bone remodeling at the implant interface. J. Biomech.26(2):167–182, 1993.Google Scholar
  26. 26.
    Stanford, C. M., and R. A. Brand. Toward an understanding of implant occlusion and strain adaptive bone modeling and remodeling. J. Prosthet. Dent.81(5):553–561, 1999.Google Scholar
  27. 27.
    Tomita, K., N. Kawahara, H. Baba, H. Tsuchiya, T. Fujita, and Y. Toribatake. Total en bloc spondylectomy. A new surgical technique for primary malignant vertebral tumors. Spine22(3):324–333, 1997.Google Scholar
  28. 28.
    Tsubota, K., T. Adachi, and Y. Tomita. Simulation study on model parameters of trabecular surface remodelling model. In: Computer Methods in Biomechanics and Biomedical Engineering—3, edited by J. Middleton, M. L. Jones, N. G. Shrive, and G. N. Pande. New York: Gordon and Breach Science, 2001, pp. 129–134.Google Scholar
  29. 29.
    Vaccaro, A. R., and S. R. Garfin. Internal fixation (pedicle screw fixation) for fusions of the lumber spine. Spine20(24S):157S-165S, 1995.Google Scholar
  30. 30.
    Zankl, M., and A. Wittmann. The adult male voxel model “Golem” segmented from whole-body CT patient data. Radiat. Environ. Biophys.40(2):153–162, 2001.Google Scholar
  31. 31.
    Zioupos, P., C. W. Smith, and Y. H. An. Factors affecting mechanical properties of bone. In: Mechanical Testing of Bone and the Bone–Implant Interface, edited by Y. H. An and R. A. Draughn. CRC, Boca Raton, FL: 1999, pp. 41–85.Google Scholar

Copyright information

© Biomedical Engineering Society 2003

Authors and Affiliations

  • Ken-ichi Tsubota
    • 1
  • Taiji Adachi
    • 2
    • 1
  • Yoshihiro Tomita
    • 2
    • 1
  1. 1.Computer and Information Division, Advanced Computing CenterThe Institute of Physical and Chemical Research (RIKEN)Wako, SaitamaJapan
  2. 2.Department of Mechanical Engineering, Faculty of EngineeringKobe UniversityNada, KobeJapan

Personalised recommendations