Annals of Biomedical Engineering

, Volume 31, Issue 6, pp 710–717 | Cite as

Effects of Creep and Cyclic Loading on the Mechanical Properties and Failure of Human Achilles Tendons

  • Tishya A. L. Wren
  • Derek P. Lindsey
  • Gary S. Beaupré
  • Dennis R. Carter


The Achilles tendon is one of the most frequently injured tendons in humans, and yet the mechanisms underlying its injury are not well understood. This study examines the ex vivo mechanical behavior of excised human Achilles tendons to elucidate the relationships between mechanical loading and Achilles tendon injury. Eighteen tendons underwent creep testing at constant stresses from 35 to 75 MPa. Another 25 tendons underwent sinusoidal cyclic loading at 1 Hz between a minimum stress of 10 MPa and maximum stresses of 30–80 MPa. For the creep specimens, there was no significant relationship between applied stress and time to failure, but time to failure decreased exponentially with increasing initial strain (strain when target stress is first reached) and decreasing failure strain. For the cyclically loaded specimens, secant modulus decreased and cyclic energy dissipation increased over time. Time and cycles to failure decreased exponentially with increasing applied stress, increasing initial strain (peak strain from first loading cycle), and decreasing failure strain. For both creep and cyclic loading, initial strain was the best predictor of time or cycles to failure, supporting the hypothesis that strain is the primary mechanical parameter governing tendon damage accumulation and injury. The cyclically loaded specimens failed faster than would be expected if only time-dependent damage occurred, suggesting that repetitive loading also contributes to Achilles tendon injuries. © 2003 Biomedical Engineering Society.

PAC2003: 8719Rr

Damage Fatigue Mechanical testing Injury Rupture 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beynnon, B., J. G. Howe, M. H. Pope, R. J. Johnson, and B. C. Fleming. The measurement of anterior cruciate ligament strainInt. Orthop.16:1–12, 1992.Google Scholar
  2. 2.
    Caler, W. E., and D. R. Carter. Bone creep-fatigue damage accumulation. J. Biomech.22:625–635, 1989.Google Scholar
  3. 3.
    Carter, D. R., and W. E. Caler. A cumulative damage model for bone fracture. J. Orthop. Res.3:84–90, 1985.Google Scholar
  4. 4.
    Chimich, D., N. Shrive, C. Frank, L. Marchuk, and R. Bray. Water content alters viscoelastic behaviour of the normal adolescent rabbit medial collateral ligament. J. Biomech.25:831–837, 1992.Google Scholar
  5. 5.
    Galloway, M. T., P. Jokl, and O. W. Dayton. Achilles tendon overuse injuries. Clin. Sports Med.11:771–782, 1992.Google Scholar
  6. 6.
    Jarvinen, M. Epidemiology of tendon injuries in sports. Clin. Sports Med.11:493–504, 1992.Google Scholar
  7. 7.
    Józsa, L., and P. Kannus. Overuse injuries of tendons. In: Human Tendons. Anatomy, Physiology, and Pathology, edited by L. Józsa, and P. Kannus. Champaign, IL: Human Kinetics, 1997, pp. 164–253.Google Scholar
  8. 8.
    Józsa, L., and P. Kannus. Spontaneous rupture of tendons. In:Human Tendons. Anatomy, Physiology, and Pathology, edited by L. Józsa and P. Kannus. Champaign, IL: Human Kinetics, 1997, pp. 254–325.Google Scholar
  9. 9.
    Kannus, P., and L. Jozsa. Histopathological changes preceding spontaneous rupture of a tendon. A controlled study of 891 patients. J. Bone Jt. Surg., Am.73:1507–1525, 1991.Google Scholar
  10. 10.
    Ker, R. F., R. M. Alexander, and M. B. Bennet. Why are mammalian tendons so thick?J. Zool.216:309–324, 1988.Google Scholar
  11. 11.
    Komi, P. V., S. Fukashiro, and M. Jarvinen. Biomechanical loading of achilles tendon during normal locomotion. Clin. Sports Med.11:521–531, 1992.Google Scholar
  12. 12.
    Maganaris, C. N., and J. P. Paul. human tendon mechanical properties. J. Physiol. (London)521:307–313, 1999.Google Scholar
  13. 13.
    Magnusson, S. P., P. Aagaard, P. Dyhre-Poulsen, and M. Kjaer. Load–displacement properties of the human triceps surae aponeurosisJ. Physiol. (London)531:277–288, 2001.Google Scholar
  14. 14.
    Muramatsu, T., T. Muraoka, D. Takeshita, Y. Kawakami, Y. Hirano, and T. Fukunaga. Mechanical properties of tendon and aponeurosis of human gastrocnemius muscleJ. Appl. Physiol.90:1671–1678, 2001.Google Scholar
  15. 15.
    Pattin, C. A., W. E. Caler, and D. R. Carter. Cyclic mechanical property degradation during fatigue loading of cortical bone. J. Biomech.29:69–79, 1996.Google Scholar
  16. 16.
    Provenzano, P., K. Hayashi, R. Lakes, and R. Vanderby, Jr.A structural and cellular evaluation of sub-failure damage in ligament. Trans. Orthopaedic Res. Soc.26:22–22, 2001.Google Scholar
  17. 17.
    Schechtman, H., and D. L. Bader. fatigue of human tendons. J. Biomech.30:829–835, 1997.Google Scholar
  18. 18.
    Schechtman, H., and D. L. Bader. Fatigue damage of human tendons. J. Biomech.35:347–353, 2002.Google Scholar
  19. 19.
    Smith, R. K., R. Jones, and P. M. Webbon. The cross-sectional areas of normal equine digital flexor tendons determined ultrasonographically. Equine Vet. J.26:460–465, 1994.Google Scholar
  20. 20.
    Wang, X. T., and R. F. Ker. Creep rupture of wallaby tail tendons. J. Exp. Biol.198:831–845, 1995.Google Scholar
  21. 21.
    Wang, X. T., R. F. Ker, and R. M. Alexander. Fatigue rupture of wallaby tail tendons. J. Exp. Biol.198:847–852, 1995.Google Scholar
  22. 22.
    Woo, S. L., M. A. Gomez, Y. Seguchi, C. M. Endo, and W. H. Akeson. Measurement of mechanical properties of ligament substance from a bone-ligament-bone preparation. J. Orthop. Res.1:22–29, 1983.Google Scholar
  23. 23.
    Woo, S. L., J. A. Weiss, M. A. Gomez, and D. A. Hawkins. Measurement of changes in ligament tension with knee motion and skeletal maturation. J. Biomech. Eng.112:46–51, 1990.Google Scholar
  24. 24.
    Wren, T. A., G. S. Beaupre, and D. R. Carter. A model for loading-dependent growth, development, and adaptation of tendons and ligaments. J. Biomech.31:107–114, 1998.Google Scholar
  25. 25.
    Wren, T. A., G. S. Beaupre, and D. R. Carter. Tendon and ligament adaptation to exercise, immobilization, and remobilization. J. Rehabil. Res. Dev.37:217–224, 2000.Google Scholar
  26. 26.
    Wren, T. A., S. A. Yerby, G. S. Beaupre, and D. R. Carter. Mechanical properties of the human achilles tendon. Clin. Biomech. (Bristol, Avon)16:245–251, 2001.Google Scholar

Copyright information

© Biomedical Engineering Society 2003

Authors and Affiliations

  • Tishya A. L. Wren
    • 1
    • 2
  • Derek P. Lindsey
    • 1
    • 2
  • Gary S. Beaupré
    • 1
    • 2
  • Dennis R. Carter
    • 1
    • 2
  1. 1.Rehabilitation Research and Development Center, Veterans Affairs Health Care SystemPalo Alto
  2. 2.Mechanical Engineering Department, Biomechanical Engineering DivisionStanford UniversityStanford

Personalised recommendations