Advertisement

Annals of Biomedical Engineering

, Volume 31, Issue 2, pp 132–141 | Cite as

Reproducibility of Image-Based Computational Fluid Dynamics Models of the Human Carotid Bifurcation

  • Jonathan B. Thomas
  • Jaques S. Milner
  • Brian K. Rutt
  • David A. Steinman
Article

Abstract

Recent studies have demonstrated the ability of magnetic resonance imaging (MRI) to provide anatomically realistic boundary conditions for computational fluid dynamics (CFD) simulations of arterial hemodynamics. To date, however, little is known about the overall reproducibility of such image-based CFD techniques. Towards this end we used serial black blood and cine phase contrast MRI to reconstruct CFD models of the carotid bifurcations of three subjects with early atherosclerosis, each imaged three times at weekly intervals. The lumen geometry was found to be precise on average to within 0.15 mm or 5%, while measured flow and heart rates varied by less than 10%. Spatial patterns of a variety of wall shear stress (WSS) indices were largely preserved among the three repeat models. Time-averaged WSS was reproduced best, on average to within 5 dyn/cm2 or 37%, followed by WSS spatial gradients, angle gradients, and oscillatory shear index. The intrasubject flow rate variations were found to contribute little to the overall WSS variability. Instead, reproducibility was determined largely by the precision of the lumen boundary extraction from the individual MR images, itself shown to be a function of the image quality and proximity to the geometrically complex bifurcation region. © 2003 Biomedical Engineering Society.

PAC2003: 8761Lh, 8757Nk, 8719Hh, 8719Rr, 8719Uv

Atherosclerosis Wall shear stress Hemodynamics Human studies Computerized image processing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Ethier, C. R., D. A. Steinman, and M. Ojha. Comparisons between computational hemodynamics, photochromic dye flow visualization and magnetic resonance velocimetry. In: The Haemodynamics of Arterial Organs—Comparison of Computational Predictions with and in Data, edited by X. Y. Xu and M. W. Collins. Southampton: WIT, 1999, pp. 131–183.Google Scholar
  2. 2.
    Friedman, M. H., C. B. Bargeron, D. D. Duncan, G. M. Hutchins, and F. F. Mark. Effects of arterial compliance and non-Newtonian rheology on correlations between intimal thickness and wall shear. J. Biomech. Eng.114:317–320, 1992.Google Scholar
  3. 3.
    Gati, J., J. Thomas, D. A. Steinman, and B. K. Rutt. High resolution fast spin echo black-blood imaging of the human carotid artery wall at 4T. Proc. Int. Soc. Magn. Reson. Med. 9. Glasgow, 2001:1964.Google Scholar
  4. 4.
    Glagov, S., C. Zarins, D. P. Giddens, and D. N. Ku. Hemodynamics and atherosclerosis. Insights and perspectives gained from studies of human arteries. Arch. Pathol. Lab. Med.112:1018–1031, 1988.Google Scholar
  5. 5.
    He, X., and D. N. Ku. Pulsatile flow in the human left coronary artery bifurcation: Average conditions. J. Biomech. Eng.118:74–82, 1996.Google Scholar
  6. 6.
    Hyun, S., C. Kleinstreuer, and J. P. Archie, Jr. Computational particle-hemodynamics analysis and geometric reconstruction after carotid endarterectomy. Comput. Biol. Med.31:365–384, 2001.Google Scholar
  7. 7.
    Imbesi, S. G., and C. W. Kerber. Analysis of slipstream flow in a wide-necked basilar artery aneurysm: Evaluation of potential treatment regimens. AJNR Am. J. Neuroradiol.22:721–724, 2001.Google Scholar
  8. 8.
    Karner, G., K. Perktold, M. Hofer, and D. Liepsch. Flow characteristics in an anatomically realistic compliant carotid artery bifurcation model. Comput. Methods Biomech. Biomed. Eng.2:171–185, 1999.Google Scholar
  9. 9.
    Kleinstreuer, C., S. Hyun, J. R. Buchanan, Jr., P. W. Longest, J. P. Archie, Jr., and G. A. Truskey. Hemodynamic parameters and early intimal thickening in branching blood vessels. Crit. Rev. Biomed. Eng.29:1–64, 2001.Google Scholar
  10. 10.
    Ladak, H. M., J. B. Thomas, J. R. Mitchell, B. K. Rutt, and D. A. Steinman. A semi-automatic technique for measurement of arterial wall from black blood MRI. Med. Phys.28:1098–1107, 2001.Google Scholar
  11. 11.
    Lieber, B. B., A. P. Stancampiano, and A. K. Wakhloo. Alteration of hemodynamics in aneurysm models by stenting: Influence of stent porosity. Ann. Biomed. Eng.25:460–469, 1997.Google Scholar
  12. 12.
    Liu, Y., Y. Lai, A. Nagaraj, B. Kane, A. Hamilton, R. Greene, D. D. McPherson, and K. B. Chandran. Pulsatile flow simulation in arterial vascular segments with intravascular ultrasound images. Med. Eng. Phys.23:583–595, 2001.Google Scholar
  13. 13.
    Malek, A. M., S. L. Alper, and S. Izumo. Hemodynamic shear stress and its role in atherosclerosis. J. Am. Med. Assoc.282:2035–2042, 1999.Google Scholar
  14. 14.
    Milner, J. S., J. A. Moore, B. K. Rutt, and D. A. Steinman. Hemodynamics of human carotid artery bifurcations: Computational studies with models reconstructed from magnetic resonance imaging of normal subjects. J. Vasc. Surg.28:143–156, 1998.Google Scholar
  15. 15.
    Minev, P. D., and C. R. Ethier. A characteristic/finite element algorithm for the 3–D Navier–Stokes equations using unstructured grids. Comput. Methods Appl. Mech. Eng.178:39–50, 1999.Google Scholar
  16. 16.
    Moore, J. A., D. A. Steinman, and C. R. Ethier. Computational blood flow modelling: Errors associated with reconstructing finite element models from magnetic resonance images. J. Biomech.31:179–184, 1998.Google Scholar
  17. 17.
    Moore, J. A., B. K. Rutt, S. J. Karlik, K. Yin, and C. R. Ethier. Computational blood flow modeling based on measurements. Ann. Biomed. Eng.27: 627–640, 1999.Google Scholar
  18. 18.
    Moore, J. A., D. A. Steinman, D. W. Holdsworth, and C. R. Ethier. Accuracy of computational hemodynamics in complex arterial geometries reconstructed from magnetic resonance imaging. Ann. Biomed. Eng.27:32–41, 1999.Google Scholar
  19. 19.
    Moore, J. A., D. A. Steinman, S. Prakash, K. W. Johnston, and C. R. Ethier. A numerical study of blood flow patterns in anatomically realistic and simplified end-to-side anastomoses. J. Biomech. Eng.121:265–272, 1999.Google Scholar
  20. 20.
    Myers, J. G., J. A. Moore, M. Ojha, K. W. Johnston, and C. R. Ethier. Factors influencing blood flow patterns in the human right coronary artery. Ann. Biomed. Eng.29:109–120, 2001.Google Scholar
  21. 21.
    Perktold, K., and M. Hofer. Mathematical modelling of flow effects and transport processes in arterial bifurcation models. In: The Haemodynamics of Arterial Organs—Comparison of Computational Predictions with and Data, edited by X. Y. Xu and M. W. Collins. Southampton: WIT, 1999, pp. 43–84.Google Scholar
  22. 22.
    Perktold, K., A. Leuprecht, M. Prosi, T. Berk, M. Czerny, W. Trubel, and H. Schima. Fluid dynamics, wall mechanics and oxygen transfer in peripheral bypass anastomoses. Ann. Biomed. Eng.30:447–460, 2002.Google Scholar
  23. 23.
    Steinman, D. A. Image-based computational fluid dynamics modeling in realistic arterial geometries. Ann. Biomed. Eng.30:483–497, 2002.Google Scholar
  24. 24.
    Steinman, D. A., J. B. Thomas, H. M. Ladak, J. S. Milner, B. K. Rutt, and J. D. Spence. Reconstruction of carotid bifurcation hemodynamics and wall thickness using computational fluid dynamics and MRI. Magn. Reson. Med.47:149–159, 2002.Google Scholar
  25. 25.
    Taylor, C. A., M. T. Draney, J. P. Ku, D. Parker, B. N. Steele, K. Wang, and C. K. Zarins. Predictive medicine: Computational techniques in therapeutic decision-making. Comput. Aided Surg.4:231–247, 1999.Google Scholar
  26. 26.
    Thomas, J. B., B. K. Rutt, H. M. Ladak, and D. A. Steinman. Effect of black blood MR image quality on vessel wall segmentation. Magn. Reson. Med.46:299–304, 2001.Google Scholar
  27. 27.
    Thomas, J. B., J. S. Milner, and D. A. Steinman. On the influence of vessel planarity on local hemodynamics at the human carotid bifurcation. Biorheology39:443–448, 2002.Google Scholar
  28. 28.
    Yuan, C., E. Lin, J. Millard, and J. N. Hwang. Closed contour edge detection of blood vessel lumen and outer wall boundaries in black-blood MR images. Magn. Reson. Imaging17:257–266, 1999.Google Scholar
  29. 29.
    Zhao, M., F. T. Charbel, N. Alperin, F. Loth, and M. E. Clark. Improved phase-contrast flow quantification by three-dimensional vessel localization. Magn. Reson. Imaging18:697–706, 2000.Google Scholar
  30. 30.
    Zhao, S. Z., X. Y. Xu, A. D. Hughes, S. A. Thom, A. V. Stanton, B. Ariff, and Q. Long. Blood flow and vessel mechanics in a physiologically realistic model of a human carotid arterial bifurcation. J. Biomech.33:975–984, 2000.-Google Scholar

Copyright information

© Biomedical Engineering Society 2003

Authors and Affiliations

  • Jonathan B. Thomas
    • 1
    • 2
  • Jaques S. Milner
    • 1
  • Brian K. Rutt
    • 1
    • 3
    • 4
  • David A. Steinman
    • 1
    • 3
    • 4
  1. 1.Imaging Research LabsRobarts Research InstituteCanada
  2. 2.Department of Medical BiophysicsUniversity of Western OntarioLondonCanada
  3. 3.Departments of Medical BiophysicsCanada
  4. 4.Diagnostic Radiology and Nuclear MedicineUniversity of Western OntarioLondonCanada

Personalised recommendations