Annals of Biomedical Engineering

, Volume 31, Issue 1, pp 42–52 | Cite as

Progress Towards Patient-Specific Computational Flow Modeling of the Left Heart via Combination of Magnetic Resonance Imaging with Computational Fluid Dynamics

  • Nikoo R. Saber
  • Nigel B. Wood
  • A. D. Gosman
  • Robert D. Merrifield
  • Guang-Zhong Yang
  • Clare L. Charrier
  • Peter D. Gatehouse
  • David N. Firmin


A combined computational fluid dynamics (CFD) and magnetic resonance imaging (MRI) methodology has been developed to simulate blood flow in a subject-specific left heart. The research continues from earlier experience in modeling the human left ventricle using time-varying anatomical MR scans. Breathing artifacts are reduced by means of a MR navigator echo sequence with feedback to the subject, allowing a near constant breath-hold diaphragm position. An improved interactive segmentation technique for the long- and short-axis anatomical slices is used. The computational domain is extended to include the proximal left atrium and ascending aorta as well as the left ventricle, and the mitral and aortic valve orifices are approximately represented. The CFD results show remarkable correspondence with the MR velocity data acquired for comparison purposes, as well as with previously published in vivo experiments (velocity and pressure). Coherent vortex formation is observed below the mitral valve, with a larger anterior vortex dominating the late-diastolic phases. Some quantitative discrepancies exist between the CFD and MRI flow velocities, owing to the limitations of the MR dataset in the valve region, heart rate differences in the anatomical and velocity acquisitions, and to certain phenomena that were not simulated. The CFD results compare well with measured ranges in literature.© 2003 Biomedical Engineering Society.

Blood flow simulation MRI measurements Left ventricle Flow structure Experimental comparisons 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bellhouse, B. J., and L. Talbot. The fluid mechanics of the aortic valve. J. Fluid Mech.35:721­735, 1969.­Google Scholar
  2. 2.
    Caro, C. G., D. J. Doorly, M. Tarnawski, K. T. Scott, Q. Long, and C. L. Dumoulin. Non­planar curvature and branching of arteries and non­planar­type flow. Proc. R. Soc. London, Ser. A452:185­197, 1996.­Google Scholar
  3. 3.
    Computational Dynamics Ltd. STAR­CD Version 3.10A Manual—Methodology, 1999.­Google Scholar
  4. 4.
    Ehman, R. L., and J. P. Felmlee. Adaptive technique for high­definition MR imaging of moving structures. Radiology173:255­263, 1989.­Google Scholar
  5. 5.
    Ferziger, J. H., and M. Peric. Computational Methods for Fluid Dynamics. Berlin: Springer, 1996.­Google Scholar
  6. 6.
    Foley, J. D., A. van Dam, S. K. Feiner, and J. F. Hughes. Computer Graphics: Principles and Practice, 2nd ed. Reading, MA: Addison­Wesley, 1996.­Google Scholar
  7. 7.
    Fujimoto, S., R. H. Mohiaddin, K. H. Parker, and D. G. Gibson. Magnetic resonance velocity mapping of normal human transmitral velocity profiles. Heart and Vessels10:236­240, 1995.­Google Scholar
  8. 8.
    Georgiadis, J. G., M. Wang, and A. Pasipoularides. Computational fluid dynamics of left ventricular ejection. Ann. Biomed. Eng.20:81­97, 1992.­Google Scholar
  9. 9.
    Issa, R. I.Solution of implicitly discretized fluid flow equations by operator splitting. J. Comput. Phys.62:40­65, 1986.­Google Scholar
  10. 10.
    Issa, R. I., A. D. Gosman, and A. P. Watkins. The computation of compressible and incompressible recirculating flows by a non­iterative implicit scheme. J. Comput. Phys.62:66­82, 1986.­Google Scholar
  11. 11.
    Kilner, P. J., M. Y. Henein, and D. G. Gibson. Our tortuous heart in dynamic mode—an echocardiographic study of mitral flow and movement in exercising subjects. Heart and Vessels12:103­110, 1997.­Google Scholar
  12. 12.
    Kilner, P. J., G. Z. Yang, R. H. Mohiaddin, D. N. Firmin, and M. H. Yacoub. Asymmetric redirection of flow through the heart. Nature (London)404:759­761, 2000.­Google Scholar
  13. 13.
    Kim, Y. H., P. G. Walker, E. M. Pedersen, J. K. Poulsen, S. Oyre, K. Houlind, and A. P. Yoganathan. Left ventricular blood flow patterns in normal subjects: A quantitative analysis by three­dimensional magnetic resonance velocity mapping. J. Am. Coll. Cardiol.26:224­238, 1995.­Google Scholar
  14. 14.
    Lemmon, J. D., and A. P. Yoganathan. Computational modeling of left heart diastolic function: Examination of ventricular dysfunction. J. Biomech. Eng.122:297­303, 2000.­Google Scholar
  15. 15.
    Lorenz, C. H., E. S. Walker, V. L. Morgan, S. S. Klein, and T. P. Graham, Jr.Normal human right and left ventricular mass, systolic function, and gender differences by cine magnetic resonance imaging. J. Cardiovasc. Magn. Reson.1:7­21, 1999.­Google Scholar
  16. 16.
    Mohiaddin, R. H.Flow patterns in the dilated ischaemic left ventricle studied by MR imaging with velocity vector mapping. Magn. Reson. Imaging5:493­498, 1995.­Google Scholar
  17. 17.
    Pasipoularides, A., J. P. Murgo, J. W. Miller, and W. E. Craig. Nonobstructive left ventricular ejection pressure gradients in man. Circ. Res.61:220­227, 1987.­Google Scholar
  18. 18.
    Pasipoularides, A.Clinical assessment of ventricular ejection dynamics with and without outflow obstruction. J. Am. Coll. Cardiol.15:859­882, 1990.­Google Scholar
  19. 19.
    Reul, H., N. Talukder, and E. W. Mueller. Fluid mechanics of the natural mitral valve. J. Biomech.14:361­72, 1981.­Google Scholar
  20. 20.
    Rominger, M. B., G. F. Bachmann, W. Pabst, and W. S. Rau. Right ventricular volumes and ejection fraction with fast cine MR imaging in breath­hold technique. Magn. Reson. Imaging10:908­918, 1999.­Google Scholar
  21. 21.
    Rueckert, D., and P. Burger. Shape­base segmentation and tracking of the heart in 4D cardiac MR image. Proc. Medical Image Understanding and Analysis' 97. Oxford UK, July 1997, pp. 193–196.­Google Scholar
  22. 22.
    Saber, N. R. (Rezazadeh). CFD modelling of blood flow in the human left ventricle based on magnetic resonance imaging data. Ph.D. thesis, University of London, January, 2001.­Google Scholar
  23. 23.
    Saber, N. R., A. D. Gosman, N. B. Wood, P. J. Kilner, C. Charrier, and D. N. Firmin. Computational flow modeling of the left ventricle based on MRI data—initial experience. Ann. Biomed. Eng.29:275­283, 2001.­Google Scholar
  24. 24.
    Smiseth, O. A., K. Steine, G. Sandbaek, M. Stugaard, and R. O. Gjoelberg. Mechanics of intraventricular filling: Study of LV early diastolic pressure gradients and flow velocities. Am. J. Physiol.275:H1062­H1069, 1998.­Google Scholar
  25. 25.
    Taylor, C. A., M. T. Draney, J. P. Ku, D. Parker, B. N. Steele, K. Wang, and C. K. Zarins. Predictive medicine: Computational techniques in therapeutic decision­making. Comput. Aided Surgery4:231­247, 1999.­Google Scholar
  26. 26.
    Weston, S. J., N. B. Wood, G. Tabor, A. D. Gosman, and D. N. Firmin. Combined MRI and CFD analysis of fully developed steady and pulsatile laminar flow through a bend. Magn. Reson. Imaging8:1158­1171, 1998.­Google Scholar
  27. 27.
    Wood, N. B.Aspects of fluid dynamics applied to the larger arteries. J. Theor. Biol.199:137­161, 1999.­Google Scholar
  28. 28.
    Wood, N. B., S. J. Weston, P. J. Kilner, A. D. Gosman, and D. N. Firmin. Combined MR imaging and CFD simulation of flow in the human descending aorta. Magn. Reson. Imaging13:699­713, 2001.­ ­Google Scholar

Copyright information

© Biomedical Engineering Society 2003

Authors and Affiliations

  • Nikoo R. Saber
    • 1
    • 2
  • Nigel B. Wood
    • 1
    • 3
  • A. D. Gosman
    • 1
  • Robert D. Merrifield
    • 4
  • Guang-Zhong Yang
    • 4
  • Clare L. Charrier
    • 3
  • Peter D. Gatehouse
    • 3
  • David N. Firmin
    • 3
  1. 1.Mechanical Engineering DepartmentImperial College of Science, Technology and MedicineLondonUnited Kingdom
  2. 2.Graduate Aeronautical LaboratoriesCalifornia Institute of Technology, M/C 301-46Pasadena
  3. 3.Cardiovascular Magnetic Resonance UnitRoyal Brompton HospitalLondonUnited Kingdom
  4. 4.Department of ComputingImperial College of Science, Technology and MedicineLondonUnited Kingdom

Personalised recommendations