Annals of Biomedical Engineering

, Volume 30, Issue 10, pp 1251–1261

The Effect of Pulsed Ultrasound on Mandibular Distraction

  • Tarek H. El-Bialy
  • Thomas J. Royston
  • Richard L. Magin
  • Carla A. Evans
  • Abd El-Moneim Zaki
  • Leon A. Frizzell
Article

Abstract

This study evaluated the effect of pulsed ultrasound on tissue repair and bone growth during mandibular osteodistraction. Twenty-one rabbits were divided into three groups of 7. The distraction started 72 h after surgically severing both sides of the mandible and proceeded at a rate of 1.5 mm/12 h for 5 days. Group 1 received pulsed ultrasound (nominally 200 μs pulse of 1.5 MHz at a 1.1 kHz pulse repetition frequency, 30 mW/cm2) for 20 min on both sides of the mandible every other day (alternating sides). Group 2 received the same pulsed ultrasound treatment on one side of the mandible every day for 20 min. Group 3 did not receive any ultrasound treatment. Bone formation at the distraction site was assessed by photodensitometry on head radiographs, a vibratory coherence test across the distraction site, a postmortem three-point bending mechanical stiffness test, and a postmortem histological examination. Statistical analyses performed using analysis of variance revealed that pulsed ultrasound enhanced bone formation at the distraction site with a high level of significance when assessed by the increase in new bone photodensity (p=0.001), vibratory coherence (p=0.001), mechanical stiffness (p=0.003), and qualitative histological studies, especially when the pulsed ultrasound treatment was directly applied daily. © 2002 Biomedical Engineering Society.

PAC2002: 8750Kk, 8763Df

Bone healing Bone formation Distraction osteogenesis Therapeutic pulsed ultrasound 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Akkus, O., F. Korkusuz, S. Akin, and N. Akkas. Relation between mechanical stiffness and vibration transmission of fracture callus: An experimental study on rabbit tibia. Proc. Inst. Mech. Eng. Part H: J. Eng. Med. 212:327–336, 1998.Google Scholar
  2. 2.
    Dessner, S., C. A. Evans, T. H. El–Bialy, and Y. Razdolsky. Mandibular lengthening using preprogrammed intraoral tooth–borne distraction devices. J. Oral Maxillofac. Surg. 57:1318–1322, 1999.Google Scholar
  3. 3.
    Duarte, L. R. The stimulation of bone growth by ultrasound. Arch. Orthop. Trauma Surg. 101:153–159, 1983.Google Scholar
  4. 4.
    Duinkerke, A. S., A. C. van de Poel, W. H. Doesburg, and W. A. Lemmens. Dosimetric analysis of experimentally produced periapical radiolucencies. Oral Surg., Oral Med., Oral Pathol. 43:782–797, 1977.Google Scholar
  5. 5.
    El–Bialy, T. H., C. A. Evans, S. Dessner, and Y. Razdolsky. Outcome of mandibular distraction in patients using a toothborne device. J. Dent. Res. 77:990, 1998.Google Scholar
  6. 6.
    El–Bialy, T. H., T. J. Royston, A. Sakata, and R. L. Magin. Vibratory coherence as an alternative to radiography in assessing bone healing after osteo–distraction. Ann. Bioengineering. 30:226–231, 2002.Google Scholar
  7. 7.
    Enwemeka, S. C., O. Rodriguez, and S. Mendosa. The biomechanical effects of low–intensity ultrasound on healing tendons. Ultrasound Med. Biol. 16:801–807, 1990.Google Scholar
  8. 8.
    Genant, H. K., K. Engelke, T. Fuerst, C. C. Gluer, S. Grampp, S. T. Harris, M. Jergas, T. Lang, Y. Lu, S. Majumdar, A. Mathur, and M. Takada. Noninvasive assessment of bone mineral and structure: State of the art. J. Bone Miner. Res. 11:707–730, 1996.Google Scholar
  9. 9.
    Goss, S. A., R. L. Johnston, and F. Dunn. Compilation of empirical ultrasonic properties of mammalian tissues, II. J. Acoust. Soc. Am. 68:93–108, 1980.Google Scholar
  10. 10.
    Goss, S. A., R. L. Johnston, and F. Dunn. Comprehensive compilation of empirical ultrasonic properties of mammalian tissues. J. Acoust. Soc. Am. 64:423–457, 1978.Google Scholar
  11. 11.
    Guerrissi, J., G. Ferrentino, D. Margulies, and D. Fiz. Lengthening of the mandible by distraction osteogenesis: Experimental work in rabbits. J. Craniofac. Surg. 5:313–317, 1994.Google Scholar
  12. 12.
    Hagiwara, T., and W. H. Bell. Effect of electrical stimulation on mandibular distraction osteogenesis. J. Craniofac. Surg. 28:12–19, 2000.Google Scholar
  13. 13.
    Heckman, J. D., J. B. Ryaby, J. McCabe, J. J. Frey, and R. F. Kilcoyne. Acceleration of tibial fracture–healing by noninvasive, low–intensity pulsed ultrasound. J. Bone Joint Surg. 76:26–34, 1994.Google Scholar
  14. 14.
    Ito, M., Y. Azumaa, T. Ohtaa, and K. Komoriyaa. Effects of ultrasound and 1,25–dihydroxyvitamin D3 on growth factor secretion in co–cultures of osteoblasts and endothelial cells. Ultrasound Med. Biol. 26:161–166, 2000.Google Scholar
  15. 15.
    Knothe–Tate, M. L., U. Knothe, and P. Neiderer. Experimental elucidation of mechanical load–induced fluid flow and its potential role in bone metabolism and functional adaptation. Am. J. Med. Sci. 316:189–195, 1998.Google Scholar
  16. 16.
    Komuro, Y., T. Takato, K. Harii, and Y. Yonemara. The histologic analysis of distraction osteogenesis of the mandible in rabbits. Plast. Reconstr. Surg. 94:152–159, 1994.Google Scholar
  17. 17.
    Kristiansen, T. K., J. P. Ryaby, J. McCabe, J. J. Frey, and L. R. Roe. Accelerated healing of distal radial fractures with the use of specific, low–intensity ultrasound. A multicenter, prospective, randomized, double–blind, placebo–controlled study. J. Bone Jt. Surg., Am. Vol. 79:961–973, 1997.Google Scholar
  18. 18.
    Mayr, E., A. Laule, G. Suger, A. Ruiter, and L. Cloes. Radiographic results of callus distraction aided by pulsed lowintensity ultrasound. J. Orthop. Trauma 15:407–414, 2001.Google Scholar
  19. 19.
    McCarthy, J., J. Schrieber, N. Karp, C. Thorn, and B. Grayson. Lengthening the human mandible by gradual distraction. Plast. Reconstr. Surg. 89:1–10, 1992.Google Scholar
  20. 20.
    Molina, F., and M. F. Ortiz. Mandibular elongation and remodeling by distraction: A farewell to major osteotomies. Plast. Reconstr. Surg. 96:825–840, 1995.Google Scholar
  21. 21.
    Pilla, A. A., M. A. Mont, P. R. Nasser, S. A. Khan, M. Figueiredo, J. J. Kaufman, and R. S. Siffert. Non–invasive low–intensity pulsed ultrasound accelerate bone healing in the rabbit. J. Orthop. Trauma. 4:246–253, 1990.Google Scholar
  22. 22.
    Razdolsky, Y. Intraoral tooth borne distraction osteogenesis device (ROD): Proceedings of First International Symposium on Distraction Processes, Paris, June 1997.Google Scholar
  23. 23.
    Rooney, J. A. Nonlinear Phenomena. In: Methods of Experimental Physics, edited by P. D. Edmonds. New York: Academic, 1981, Vol. 19, Chap. 6, pp. 299–353.Google Scholar
  24. 24.
    Shimazaki, A., K. Inui, Y. Azuma, N. Nishimura, and Y. Yamano. Low–intensity pulsed ultrasound accelerates bone maturation in distraction osteogenesis in rabbits. J. Bone Jt. Surg., Br. 82–B:1077–1082, 2000.Google Scholar
  25. 25.
    Stewart, K. J., B. Weyand, R. J. van't Hof, S. A. White, G. O. Lvoff, N. Maffulli, and M. D. Poole. A quantitative analysis of the effect of insulin–like growth factor–1 infusion during mandibular distraction osteogenesis in rabbits. Br. J. Plast. Surg. 52:343–350, 1999.Google Scholar
  26. 26.
    Stewart, K. J., G. O. Lvoff, S. A. White, S. F. Bonar, W. R. Walsh, R. C. Smart, and M. D. Poole. Mandibular distraction osteogenesis: A comparison of distraction rates in the rabbit model. J. Maxillofacial Surg. 26:43–49, 1998.Google Scholar
  27. 27.
    Sun, J. S., Y. H. Tsuang, F. H. Lin, H. C. Liu, C. Z. Tsai, and W. H. Chang. Bone defect healing enhanced by ultrasound stimulation: An in vitro tissue culture model. Biomed. Mater. Res. 46:253–261, 1999.Google Scholar
  28. 28.
    Tanzer, M., E. Harvey, A. Kay, P. Morton, and J. D. Bobyn. Effect of noninvasive low intensity ultrasound on bone growth into porous–coated implants. J. Orthop. Res. 14:901–906, 1996.Google Scholar
  29. 29.
    Tsai, C. L., W. H. Chang, and T. K. Liu. Preliminary studies of duration and intensity of ultrasonic treatments on fracture repair. Chin. J. Physiol. 35:21–26, 1992.Google Scholar
  30. 30.
    Wang, S. J., D. G. Lewallen, M. E. Bolander, E. Y. Chao, D. M. Ilstrup, and J. F. Greenleaf. Low intensity ultrasound treatment increases strength in a rat femoral fracture model. J. Orthop. Res. 12:40–47, 1994.Google Scholar
  31. 31.
    Young, S. R., and M. Dyson. The effect of therapeutic ultrasound on angiogenesis. Ultrasound Med. Biol. 16:261–269, 1990.Google Scholar
  32. 32.
    Zorlu, U., M. Tercan, I. Ozyazgan, I. Taskan, Y. Kardas, F. Balkar, and F. Ozturk. Comparative study of the effect of ultrasound and electrostimulation on bone healing in rats. Am. J. Phys. Med. Rehabil. 77:427–432, 1998.Google Scholar

Copyright information

© Biomedical Engineering Society 2002

Authors and Affiliations

  • Tarek H. El-Bialy
    • 1
  • Thomas J. Royston
    • 2
  • Richard L. Magin
    • 3
  • Carla A. Evans
    • 4
  • Abd El-Moneim Zaki
    • 5
  • Leon A. Frizzell
    • 6
  1. 1.Tanta University, Egypt and Department of BioengineeringUniversity of Illinois at ChicagoChicago
  2. 2.Department of Mechanical EngineeringUniversity of Illinois at ChicagoChicago
  3. 3.Department of BioengineeringUniversity of Illinois at ChicagoChicago
  4. 4.Department of OrthodonticsUniversity of Illinois at ChicagoChicago
  5. 5.University of Illinois at ChicagoChicago
  6. 6.Department of Electrical and Computer EngineeringUniversity of Illinois at Urbana-ChampaignUrbana

Personalised recommendations