Annals of Biomedical Engineering

, Volume 30, Issue 10, pp 1281–1290 | Cite as

Surface Strains in the Anterior Leaflet of the Functioning Mitral Valve

  • M. S. Sacks
  • Z. He
  • L. Baijens
  • S. Wanant
  • P. Shah
  • H. Sugimoto
  • A. P. Yoganathan

Abstract

The mitral valve (MV) is a complex anatomical structure whose function involves a delicate force balance and synchronized function of each of its components. Elucidation of the role of each component and their interactions is critical to improving our understanding of MV function, and to form the basis for rational surgical repair. In the present study, we present the first known detailed study of the surface strains in the anterior leaflet in the functioning MV. The three-dimensional spatial positions of markers placed in the central region of the MV anterior leaflet in a left ventricle-simulating flow loop over the cardiac cycle were determined. The resulting two-dimensional in-surface strain tensor was computed from the marker positions using a C0 Lagrangian quadratic finite element. Results demonstrated that during valve closure the anterior leaflet experienced large, anisotropic strains with peak stretch rates of 500%–1000%/s. This rapid stretching was followed by a plateau phase characterized by relatively constant strain state. We hypothesized that the presence of this plateau phase was a result of full straightening of the leaflet collagen fibers upon valve closure. This hypothesis suggests that the MV collagen fibers are designed to allow leaflet coaptation followed by a dramatic increase in stiffness to prevent further leaflet deformation, which would lead to valvular regurgitation. These studies represent a first step in improving our understanding of normal MV function and to help establish the principles for repair and replacement. © 2002 Biomedical Engineering Society.

PAC2002: 8719Hh, 8719Uv, 8719Rr

Mitral valve Heart valves Valve function Dynamic imaging Soft tissue Biomechanics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Acar, C., A. Farge, A. Ramsheyi, J. C. Chachques, S. Mihaileanu, R. Gouezo, J. Gerota, and A. F. Carpentier. Mitral valve replacement using a cryopreserved mitral homograft. Ann. Thorac. Surg. 57:746–748, 1994.Google Scholar
  2. 2.
    Bathe, K. J. Finite Elements Procedures in Engineering Analysis. Englewood Cliffs, NJ: Prentice–Hall, 1982.Google Scholar
  3. 3.
    Bellhouse, B. J., and F. H. Bellhouse. Fluid mechanics of the mitral valve. Nature (London) 224:615–618, 1969.Google Scholar
  4. 4.
    Berne, R. M., and M. N. Levy. Cardiovascular Physiology. St. Louis: Mosby, 1986.Google Scholar
  5. 5.
    Billiar, K. L., and M. S. Sacks. Biaxial mechanical properties of the natural and glutaraldehyde treated aortic valve cusp–Part I: Experimental results. J. Biomech. Eng. 122:23–30, 2000.Google Scholar
  6. 6.
    Butler, D. L., S. Goldstein, and F. Guilak. Functional tissue engineering: The role of biomechanics. J. Biomech. Eng. 122:570–575, 2000.Google Scholar
  7. 7.
    Edmunds, H., Jr. Ischemic mitral regurgitation. In: Cardiac Surgery in Adults. New York: McGraw–Hill, 1997, pp. 657–676.Google Scholar
  8. 8.
    Flugge, W. Tensor Analysis and Continuum Mechanics. New York: Springer, 1997.Google Scholar
  9. 9.
    Fung, Y. Foundations of Solid Mechanics. Englewood Cliffs, NJ: Prentice–Hall, 1965.Google Scholar
  10. 10.
    Fung, Y. C. Biomechanics: Mechanical Properties of Living Tissues. New York: Springer, 1993.Google Scholar
  11. 11.
    Hartiala, J. J., G. H. Mostbeck, E. Foster, N. Fujita, M. C. Dulce, A. F. Chazouilleres, and C. B. Higgins. Velocityencoded cine MRI in the evaluation of left ventricular diastolic function: Measurement of mitral valve and pulmonary vein flow velocities and flow volume across the mitral valve. Am. Heart J. 125:1054–1066, 1993.Google Scholar
  12. 12.
    Hashim, S. R., A. Fontaine, S. He, R. A. Levine, and A. P. Yoganathan. A three–component force vector cell for in vitro quantification of the force exerted by the papillary muscle on the left ventricular wall. J. Biomech. 30:1071–1075, 1997.Google Scholar
  13. 13.
    He, S., A. A. Fontaine, E. Schwammenthal, A. P. Yoganathan, and R. A. Levine. Integrated mechanism for functional mitral regurgitation: Leaflet restriction versus coapting force: In vitro studies. Circulation 96:1826–1834, 1997.Google Scholar
  14. 14.
    Heart stroke facts: 1996 statistical supplement. Dallas, American Heart Association.Google Scholar
  15. 15.
    Hukins, D. W. L. Collagen orientation. In: Connective Tissue Matrix. Verlag: Chemie, 1984, pp. 211–240.Google Scholar
  16. 16.
    Hurst, J. W., R. B. Logue, C. E. Rackley, R. C. Schlant, E. H. Sonnenblick, A. G. Wallace, and N. K. Wenger. The Heart. New York: McGraw Hill, 1986.Google Scholar
  17. 17.
    Iyengar, A., H. Sugimoto, D. B. Smith, and M. Sacks. Dynamic in vitro 3D reconstruction of heart valve leaflets using structured light projection. Ann. Biomed. Eng. 29:963–973, 2001.Google Scholar
  18. 18.
    Jensen, M. O., J. D. Lemmon, V. C. Gessaghi, C. P. Conrad, R. A. Levine, and A. P. Yoganathan. Harvested porcine mitral xenograft fixation: Impact on fluid dynamic performance. J. Heart Valve Dis. 10:111–124, 2001.Google Scholar
  19. 19.
    Kunzelman, K. S., and R. P. Cochran. Stress/strain characteristics of porcine mitral valve tissue: Parallel versus perpendicular collagen orientation. J. Cardiovasc. Surg. 7:71–78, 1992.Google Scholar
  20. 20.
    Kunzelman, K. S., R. P. Cochran, C. Chuong, W. S. Ring, E. D. Verrier, and R. D. Eberhart. Finite element analysis of the mitral valve. J. Heart Valve Dis. 2:326–340, 1993.Google Scholar
  21. 21.
    Kunzelman, K. S., R. P. Cochran, S. S. Murphree, W. S. Ring, E. D. Verrier, and R. C. Eberhart. Differential collagen distribution in the mitral valve and its influence on biomechanical behaviour. J. Heart Valve Dis. 2:236–244, 1993.Google Scholar
  22. 22.
    Kunzelman, K. S., R. P. Cochran, E. D. Verrier, and R. C. Eberhart. Anatomic basis for mitral valve modelling. J. Heart Valve Dis. 3:491–496, 1994.Google Scholar
  23. 23.
    Kunzelman, K. S., M. S. Reimink, and R. P. Cochran. Flexible versus rigid ring annuloplasty for mitral valve annular dilatation: A finite element model. J. Heart Valve Dis. 7:108–116, 1998.Google Scholar
  24. 24.
    Kunzelman, K. S., M. S. Sacks, R. P. Cochran, and R. C. Eberhart. Mitral valve leaflet collagen distribution by laser analysis. Seventh Southern Biomedical Engineering Conference, 1988, pp. 82–85.Google Scholar
  25. 25.
    Lam, J. H., N. Ranganathan, E. D. Wigle, and M. D. Silver. Morphology of the human mitral valve. I. Chordae tendineae: A new classification. Circulation 41:449–458, 1970.Google Scholar
  26. 26.
    Lee, J., S. Haberer, C. Pereira, W. Naimark, D. Courtman, and G. Wilson. High strain rate testing and structural analysis of pericardial bioprosthetic materials. In: Biomaterials' Mechanical Properties, edited by H. Kambic and A. Yokobori. Philadelphia: ASTM, 1994, Vol. 1173, pp. 19–42.Google Scholar
  27. 27.
    Lembo, N. J., L. J. Dell'Italia, M. H. Crawford, J. F. Miller, K. L. Richards, and R. A. O'Rourke. Mitral valve prolapse in patients with prior rheumatic fever. Circulation 77:830–836, 1988.Google Scholar
  28. 28.
    Lim, K. O., and D. R. Boughner. Low frequency dynamic viscoelastic properties of human mitral valve tissue. Cardiovasc. Res. 10:459–465, 1976.Google Scholar
  29. 29.
    Marzan, G. T. A computer program for direct linear transformation solution of the collinearity condition and some applications of it. Proceedings of the Symposium on Close–range Photogrammetric Systems, 1975, pp. 420–476.Google Scholar
  30. 30.
    May–Newman, K., and F. C. Yin. Biaxial mechanical behavior of excised porcine mitral valve leaflets. Am. J. Physiol. 269:H1319–H1327, 1995.Google Scholar
  31. 31.
    Mendenhall, W., and T. Sincich. Statistics for the Engineering and Computer Sciences. San Francisco: Dellen, 1988.Google Scholar
  32. 32.
    Ming, L., and H. K. Zhen. Study of the closing mechanism of natural heart valves. Appl. Math. Mech. (n Chap. 14) 17:624–632, 1986.Google Scholar
  33. 33.
    Ormiston, J. A., P. M. Shah, C. Tei, and M. Wong. Size and motion of the mitral valve annulus in man. I. A twodimensional echocardiographic method and findings in normal subjects. Circulation 64:113–120, 1981.Google Scholar
  34. 34.
    Otsuji, Y., M. D. Handschumacher, E. Schwammenthal, L. Jiang, J. K. Song, J. L. Guerrero, G. J. Vlahakes, and R. A. Levine. Insights from three–dimensional echocardiography into the mechanism of functional mitral regurgitation: Direct in vivo demonstration of altered leaflet tethering geometry. Circulation 96:1999–2008, 1997.Google Scholar
  35. 35.
    Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical Receipes in C. Cambridge: Cambridge University Press, 1988.Google Scholar
  36. 36.
    Ranganathan, N., J. H. Lam, E. D. Wigle, and M. D. Silver. Morphology of the human mitral valve. II. The value leaflets. Circulation 41:459–467, 1970.Google Scholar
  37. 37.
    Reul, H., and N. Talukder. Heart valve mechanics. In: The Heart. New York: McGraw–Hill, 1989.Google Scholar
  38. 38.
    Sacks, M. S. Biaxial mechanical evaluation of planar biological materials. J. Elast. 61:199–246, 2000.Google Scholar
  39. 39.
    Sacks, M. S., C. J. Chuong, G. H. Templeton, and R. Peshock. In vivo 3–D reconstruction and geometric characterization of the right ventricular free wall. Ann. Biomed. Eng. 21:263–275, 1993.Google Scholar
  40. 40.
    Sacks, M. S., D. B. Smith, and E. D. Hiester. A small angle light scattering device for planar connective tissue microstructural analysis. Ann. Biomed. Eng. 25:678–689, 1997.Google Scholar
  41. 41.
    Schwammenthal, E., C. Chen, F. Benning, M. Block, G. Breithardt, and R. A. Levine. Dynamics of mitral regurgitant flow and orifice area. Physiologic application of the proximal flow convergence method: Clinical data and experimental testing. Circulation 90:307–322, 1994.Google Scholar
  42. 42.
    Silverman, M. E., and J. W. Hurst. The mitral complex. Interaction of the anatomy, physiology, and pathology of the mitral annulus, mitral valve leaflets, chordae tendineae, and papillary muscles. Am. Heart J. 76:399–418, 1968.Google Scholar
  43. 43.
    Smith, D. B., M. S. Sacks, D. A. Vorp, and M. Thornton. Surface geometric analysis of anatomic structures using biquintic finite element interpolation. Ann. Biomed. Eng. 28:598–611, 2000.Google Scholar
  44. 44.
    Thubrikar, M., S. P. Nolan, L. P. Bosher, and J. D. Deck. The cyclic changes and structure of the base of the aortic valve. Am. Heart J. 99:217–224, 1980.Google Scholar
  45. 45.
    Thubrikar, M., W. C. Piepgrass, L. P. Bosher, and S. P. Nolan. The elastic modulus of canine aortic valve leaflets in vivo and in vitro. Circ. Res. 47:792–800, 1980.Google Scholar
  46. 46.
    Yoganathan, A. Cardiac valve prostheses. In: The Biomedical Engineering Handbook. Boca Raton: CRC Press, 1995.Google Scholar

Copyright information

© Biomedical Engineering Society 2002

Authors and Affiliations

  • M. S. Sacks
    • 1
  • Z. He
    • 2
  • L. Baijens
    • 3
  • S. Wanant
    • 2
  • P. Shah
    • 2
  • H. Sugimoto
    • 1
  • A. P. Yoganathan
    • 2
  1. 1.Engineered Tissue Mechanics Laboratory, McGowan Institute for Regenerative MedicineUniversity of PittsburghPittsburgh
  2. 2.Cardiovascular Fluid Mechanics Laboratory, Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology & Emory UniversityAtlanta
  3. 3.Department of Biomedical EngineeringTechnische Universiteit EindhovenEindhovenThe Netherlands

Personalised recommendations