Advertisement

Annals of Biomedical Engineering

, Volume 30, Issue 8, pp 1033–1045 | Cite as

Quantification of Vessel Wall Cyclic Strain Using Cine Phase Contrast Magnetic Resonance Imaging

  • Mary T. Draney
  • Robert J. Herfkens
  • Thomas J. R. Hughes
  • Norbert J. Pelc
  • Kristin L. Wedding
  • Christopher K. Zarins
  • Charles A. Taylor
Article

Abstract

In vivo quantification of vessel wall cyclic strain has important applications in physiology and disease research and the design of intravascular devices. We describe a method to calculate vessel wall strain from cine PC-MRI velocity data. Forward–backward time integration is used to calculate displacement fields from the velocities, and cyclic Green–Lagrange strain is computed in segments defined by the displacements. The method was validated using a combination of in vitro cine PC-MRI and marker tracking studies. Phantom experiments demonstrated that wall displacements and strain could be calculated accurately from PC-MRI velocity data, with a mean displacement difference of 0.20±0.16 mm (pixel size 0.39 mm) and a mean strain difference of 0.01 (strain extent 0.20). A propagation of error analysis defined the relationship between the standard deviations in displacements and strain based on original segment length and strain magnitude. Based on the measured displacement standard deviation, strain standard deviations were calculated to be 0.015 (validation segment length) and 0.045 (typical segment length). To verify the feasibility of using this method in vivo, cyclic strain was calculated in the thoracic aorta of a normal human subject. Results demonstrated nonuniform deformation and circumferential variation in cyclic strain, with a peak average strain of 0.08±0.11. © 2002 Biomedical Engineering Society.

PAC2002: 8761-c, 8719Uv, 8719Rr, 8757Gg

Biomechanics Wall motion Aorta Aneurysm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Bayliss, W. M. On the local reactions of the arterial wall to changes of internal pressure. Proc. Physiol. Soc. 26:220-231, 1901.Google Scholar
  2. 2.
    Draney, M. T., K. L. Wedding, C. A. Taylor, and N. J. Pelc. An in vivo method for measuring vessel wall motion and cyclic strain using magnetic resonance imaging. Proceedings of the 1st Joint BMES/EMBS Conference, Atlanta, GA, 1999.Google Scholar
  3. 3.
    Draney, M. T. Biomechanics of the human aorta and aortic aneurysms. Proceedings of the Frontiers in Vascular Disease Conference, Pebble Beach, CA, 2000.Google Scholar
  4. 4.
    Draney, M. T., F. R. Arko, M. T. Alley, M. Markl, R. J. Herfkens, N. J. Pelc, and C. K. Zarins. In vivo quantification of porcine aortic wall motion using cine PC-MRI. Proceedings of the 10th Annual International Society for Magnetic Resonance in Medicine Conference, HI, 2002.Google Scholar
  5. 5.
    Dzau, V. J., and G. H. Gibbons. Vascular remodeling: Mechanisms and implications. J. Cardiovasc. Pharmacol. 21 Suppl. 1, S1-S5, 1993.Google Scholar
  6. 6.
    Friedman, M. H., G. M. Hutchins, and C. B. Bargeron. Correlation between intimal thickness and fluid shear in human arteries. Atherosclerosis 39:425, 1981.Google Scholar
  7. 7.
    Fronek, K., G. Schmid-Schoenbein, and Y. C. Fung. A noncontact method for three-dimensional analysis of vascular elasticity in vivo and in vitro. J. Appl. Physiol. 40:634-637, 1976.Google Scholar
  8. 8.
    Fung, Y. C., and S. Q. Liu. Change of residual strains in arteries due to hypertrophy caused by aortic constriction. Circ. Res. 65:1340-1349, 1989.Google Scholar
  9. 9.
    Glagov, S., C. K. Zarins, D. P. Giddens, and D. N. Ku. Hemodynamics and atherosclerosis. Insights and perspectives gained from studies of human arteries. Arch. Pathol. Lab. Med. 112:1018-1031, 1988.Google Scholar
  10. 10.
    Hansen, B., A. H. Menkis, and I. Vesely. Longitudinal and radial distensibility of the porcine aortic root (see comments). Ann. Thorac. Surg. 60:S384-S390, 1995.Google Scholar
  11. 11.
    Hardt, S. E., A. Just, R. Bekeredjian, W. Kubler, H. R. Kirchheim, and H. F. Kuecherer. Aortic pressure-diameter relationship assessed by intravascular ultrasound: Experimental validation in dogs. Am. J. Physiol. 276:H1078-H1085, 1999.Google Scholar
  12. 12.
    Hokanson, D. E., D. J. Mozersky, D. S. Summer, and D. E. Strandness, Jr. A phase-locked echo tracking system for recording arterial diameter changes in vivo. J. Appl. Physiol. 32:728-733, 1972.Google Scholar
  13. 13.
    Imura, T., K. Yamamoto, K. Kanamori, T. Mikami, and H. Yasuda. Noninvasive ultrasonic measurement of the elastic properties of the human abdominal aorta. Cardiovasc. Res. 20:208-214, 1986.Google Scholar
  14. 14.
    Kamiya, A., and T. Togawa. Adaptive regulation of wall shear stress to flow change in the canine carotid artery. Am. J. Physiol. 239:H14-H21, 1980.Google Scholar
  15. 15.
    Lyon, R. T., A. Runyon-Hass, H. R. Davis, S. Glagov, and C. K. Zarins. Protection from atherosclerotic lesion formation by reduction of artery wall motion. J. Vasc. Surg. 5:59-67, 1987.Google Scholar
  16. 16.
    Meyer, S. L. Propagation of error and least squares. In: Data Analysis for Scientists and Engineers. New York: Wiley, 1975 pp. 39-48.Google Scholar
  17. 17.
    Moore, C. C., E. R. McVeigh, and E. A. Zerhouni. Quantitative tagged magnetic resonance imaging of the normal human left ventricle. Top. Magn. Reson. Imaging. 11:359-371, 2000.Google Scholar
  18. 18.
    Moreno, M. R., J. E. Moore, Jr., and R. Meuli. Crosssectional deformation of the aorta as measured with magnetic resonance imaging. J. Biomech. Eng. 120:18-21, 1998.Google Scholar
  19. 19.
    Pelc, N. J., R. J. Herfkens, A. Shimakawa, and D. R. Enzmann. Phase contrast cine magnetic resonance imaging. Magn. Reson. Q. 7:229-254, 1991.Google Scholar
  20. 20.
    Pelc, N. J., M. Drangova, L. R. Pelc, Y. Zhu, D. C. Noll, B. S. Bowman, and R. J. Herfkens. Tracking of cyclical motion using phase contrast cine MRI velocity data. J. Magn. Reson. Imaging. 5:339-345, 1995.Google Scholar
  21. 21.
    Thubrikar, M. J., and F. Robicsek. Pressure-induced arterial wall stress and atherosclerosis. Ann. Thorac. Surg. 59:1594-1603, 1995.Google Scholar
  22. 22.
    Tropea, B. I., S. P. Schwarzacher, A. Chang, C. Asvar, P. Huie, R. K. Sibley, and C. K. Zarins. Reduction of aortic wall motion inhibits hypertension-mediated experimental atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 20:2127-2133, 2000.Google Scholar
  23. 23.
    Wedding, K. L., M. T. Draney, R. J. Herfkens, C. K. Zarins, C. A. Taylor, and N. J. Pelc. Measurement of vessel wall strain using cine phase contrast MRI. J. Magn. Reson. Imaging. 15:418-428, 2002.Google Scholar
  24. 24.
    Wedeen, V. J. Magnetic resonance imaging of myocardial kinematics. Technique to detect, localize, and quantify the strain rates of the active human myocardium. Magn. Reson. Med. 27:52-67, 1992.Google Scholar
  25. 25.
    Xu, C., S. Glagov, M. A. Zatina, and C. K. Zarins. Hypertension sustains plaque progression despite reduction of hypercholesterolemia. Hypertension 18:123-129, 1991.Google Scholar
  26. 26.
    Zarins, C. K., D. P. Giddens, B. K. Bharadvaj, V. S. Sottiurai, R. F. Mabon, and S. Glagov. Carotid bifurcation atherosclerosis: Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress. Circ. Res. 53:502-514, 1983.Google Scholar
  27. 27.
    Zerhouni, E. A., D. M. Parish, W. J. Rogers, A. Yang, and E. P. Shapiro. Human heart: Tagging with MR imaging: A method for noninvasive assessment of myocardial motion. Radiology 169:59-63, 1988.Google Scholar
  28. 28.
    Zhu, Y., M. Drangova, and N. J. Pelc. Fourier tracking of myocardial motion using cine-PC data. Magn. Reson. Med. 35:471-480, 1996.Google Scholar

Copyright information

© Biomedical Engineering Society 2002

Authors and Affiliations

  • Mary T. Draney
    • 1
  • Robert J. Herfkens
    • 2
  • Thomas J. R. Hughes
    • 1
  • Norbert J. Pelc
    • 2
  • Kristin L. Wedding
    • 2
  • Christopher K. Zarins
    • 3
  • Charles A. Taylor
    • 1
    • 3
  1. 1.Department of Mechanical EngineeringStanford UniversityStanford
  2. 2.Department of RadiologyStanford UniversityStanford
  3. 3.Department of SurgeryStanford UniversityStanford

Personalised recommendations