Annals of Biomedical Engineering

, Volume 30, Issue 7, pp 867–883 | Cite as

Region Specific Modeling of Cardiac Muscle: Comparison of Simulated and Experimental Potentials

  • Adam L. Muzikant
  • Edward W. Hsu
  • Patrick D. Wolf
  • Craig S. Henriquez


This article investigates the quantitative predictive capabilities of region-specific models by comparing experimental electrograms obtained from in vivo mapping of the ventricular free wall with those obtained through simulation of a region specific three-dimensional bidomain model that incorporates measured fiber orientations. Epicardial electrograms were recorded from canine left ventricles during and after unipolar pacing using a 528-channel electrode plaque. Fiber directions throughout the tissue were estimated from diffusion-weighted MRI and from pace mapping. Electrograms were computed in the bidomain model with experimentally derived properties during paced activations at the same spatiotemporal resolution as those recorded experimentally. Epicardial potentials from model and experiment were directly compared, and sensitivities of these comparisons to reference electrode location and to the choice of material properties were analyzed. The comparisons performed here demonstrate, that (1) the stimulus artifact can be used to estimate the in vivo myocardial fiber architecture, (2) the correlation between simulated and experimental electrograms decreases with increasing pacing depth, and (3) the quantitative comparisons between bidomain model and experimental data are sensitive to both the description of the fiber architecture, and the location of the unipolar reference electrode, but relatively insensitive to moderate changes in the bidomain conductivities. © 2002 Biomedical Engineering Society.

PAC2002: 8719Hh, 8710+e, 8719Nn, 8780-y

Bidomain model Electrograms Diffusion tensor MRI Heart modeling Fibers 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Antzelevitch, C., W. Shimizu, G. X. Yan, S. Sicouri, J. Weissenburger, V. V. Nesterenko, A. Burashnikov, J. Di Diego, J. Saffitz, and G. P. Thomas. The M cell: Its contribution to the ECG and to normal and abnormal electrical function of the heart. J. Cardiovasc. Electrophysiol. 10:1124-1152, 1999.Google Scholar
  2. 2.
    Cabo, C., J. M. Wharton, P. D. Wolf, R. E. Ideker, and W. M. Smith. Activation in unipolar cardiac electrograms: A frequency analysis. IEEE Trans. Biomed. Eng. 37:500-508, 1990.Google Scholar
  3. 3.
    Cherry, E. M., H. S. Greenside, and C. S. Henriquez. A space-time adaptive method for simulating complex cardiac dynamics. Phys. Rev. Lett. 84:1343-1346, 2000.Google Scholar
  4. 4.
    Clerc, L. Directional differences of impulse spread in trabecular muscle from mammalian heart. J. Physiol. (Paris) 255:335-346, 1976.Google Scholar
  5. 5.
    Colli Franzone, P., L. Guerri, and S. Tentoni. Mathematical modeling of the excitation process in myocardial tissue: In-fluence of fiber rotation on wavefront propagation and potential field. Math. Biosci. 101:155-235, 1990.Google Scholar
  6. 6.
    Colli Franzone, P., L. Guerri, and B. Taccardi. Potential distributions generated by point stimulation in a myocardial volume: Simulation studies in a model of anisotropic ventricular muscle. J. Cardiovasc. Electrophysiol. 4:438-458, 1993.Google Scholar
  7. 7.
    Colli Franzone, P., L. Guerri, and B. Taccardi. Spread of excitation in a myocardial volume: Simulation studies in a model of anisotropic ventricular muscle activated by point stimulation. J. Cardiovasc. Electrophysiol. 4:144-160, 1993.Google Scholar
  8. 8.
    Fenton, F., and A. Karma. Vortex dynamics in three dimensional continuous myocardium with fiber rotation: Filament instability and fibrillation. Chaos 8:20-47, 1998.Google Scholar
  9. 9.
    Gander, W., G. H. Golub, and I. R. Strebe. 1994. Fitting of circles and ellipses: Least Squares Solution. Department Informatik, Institut fur Wissenschaftliches Rechnen.Google Scholar
  10. 10.
    Harrild, D. M., R. C. Penland, and C. S. Henriquez. A flexible method for simulating cardiac conduction in threedimensional complex geometries. J. Electrocardial. 33:241-251, 2000.Google Scholar
  11. 11.
    Henriquez, C. S. Simulating the electrical behavior of cardiac tissue using the bidomain model. Crit. Rev. Biomed. Eng. 21:1-77, 1993.Google Scholar
  12. 12.
    Henriquez, C. S., A. L. Muzikant, and C. K. Smoak. Anisotropy, fiber curvature, and bath loading effects on activation in thin and thick cardiac tissue preparations: Simulations in a three-dimensional bidomain model. J. Cardiovasc. Electrophysiol. 7:424-444, 1996.Google Scholar
  13. 13.
    Hsu, E. W., A. L. Muzikant, S. A. Matulevicius, R. C. Penland, and C. S. Henriquez. Magnetic resonance myocardial fiber-orientation mapping with direct histological correlation. Am. J. Physiol. 274:H1627-H1634, 1998.Google Scholar
  14. 14.
    Kincaid, D. R., J. R. Respess, D. M. Young, and R. G. Grimes. Algorithm 586: ITPACK 2C: A FORTRAN package for solving large sparse linear systems by adaptive accelerated iterative methods. ACM Trans. Math. Softw. 8:302-322, 1982.Google Scholar
  15. 15.
    Krassowska, W., and J. C. Neu. Effective boundary condi-tions for syncytial tissue. IEEE Trans. Biomed. Eng. 41:143-150, 1994.Google Scholar
  16. 16.
    LeGrice, I. J., B. H. Smaill, L. Z. Chai, S. G. Edgar, J. B. Gavin, and P. J. Hunter. Laminar structure of the heart: Ventricular myocyte arrangement and connective tissue architecture in the dog. Am. J. Physiol. 269:H571-H582, 1995.Google Scholar
  17. 17.
    Leon, L. J., and B. M. Horacek. Computer model of excitation and recovery in the anisotropic myocardium. II. Excitation in the simplified left ventricle. J. Electrocardiol. 24:17-31, 1991.Google Scholar
  18. 18.
    Muzikant, A. L., and C. S. Henriquez. Paced activation mapping reveals organization of myocardial fibers: a simulation study. J. Cardiovasc. Electrophysiol. 8:281-294, 1997.Google Scholar
  19. 19.
    Muzikant, A. L., and C. S. Henriquez. Validation of threedimensional conduction models using experimental mapping: Are we getting closer? Prog. Biophys. Mol. Biol. 69:205-223, 1998.Google Scholar
  20. 20.
    Neeman, M. J., J. P. Freyer, and L. O. Sillerud. A simple method for obtaining cross-term-free images for diffusion anisotropy studies in NMR microimaging. Magn. Reson. Med. 21:138-143, 1991.Google Scholar
  21. 21.
    Neu, J. C., and W. Krassowska. Homogenization of syncytial tissues. Crit. Rev. Biomed. Eng. 21:137-199, 1993.Google Scholar
  22. 22.
    Nielsen, P. M. F., I. J. LeGrice, and B. H. Smaill. Mathematical model of geometry and fibrous structure of the heart. Am. J. Physiol. 29:H1365-H1378, 1991.Google Scholar
  23. 23.
    Plonsey, R., and R. C. Barr. A critique of impedance measurements in cardiac tissue. Ann. Biomed. Eng. 14:307-322, 1986.Google Scholar
  24. 24.
    Pollard, A. E., M. J. Burgess, and K. W. Spitzer. Computer simulations of three-dimensional propagation in ventricular myocardium: Effects of intramural fiber rotation and inhomogeneous conductivity on epicardial activation. Circ. Res. 72:744-756, 1993.Google Scholar
  25. 25.
    Roberts, D. E., L. T. Hersh, and A. M. Scher. Influence of cardiac fiber orientation on wavefront voltage, conduction velocity, and tissue resistivity in the dog. Circ. Res. 44:701-712, 1979.Google Scholar
  26. 26.
    Roberts, D. E., and A. M. Scher. Effect of tissue anisotropy on extracellular potential fields in canine myocardium. Circ. Res. 50:342-351, 1982.Google Scholar
  27. 27.
    Rogers, J. M., and A. D. McCulloch. A collocation-Galerkin finite element model of cardiac action potential propagation. IEEE Trans. Biomed. Eng. 41:743-757, 1994.Google Scholar
  28. 28.
    Roth, B. J. Action potential propagation in a thick strand of cardiac muscle. Circ. Res. 68:162-173, 1991.Google Scholar
  29. 29.
    Roth, B. J. Electrical conductivity values used with the bidomain model of cardiac tissue. IEEE Trans. Biomed. Eng. 44:326-328, 1997.Google Scholar
  30. 30.
    Selvester, R. H., W. L. Kirk, and R. B. Pearson. Propagation velocities and voltage magnitudes in local segments of dog myocardium. Circ. Res. 27:619-629, 1970.Google Scholar
  31. 31.
    Taccardi, B., E. Macchi, R. L. Lux, P. R. Ershler, S. Spaggiari, S. Baruffi, and Y. Vyhmeister. Effect of myocardial fiber direction on epicardial potentials. Circulation 90:3076-3090, 1995.Google Scholar
  32. 32.
    Vetter, F. J., and A. D. McCulloch. Mechanoelectric feedback in a model of the passively inflated left ventricle. Ann. Biomed. Eng. 29:414-426, 2001.Google Scholar
  33. 33.
    Weidmann, S. Electrical constants of trabecular muscle from mammalian heart. J. Physiol. (London) 210:1041-1054, 1970.Google Scholar
  34. 34.
    Wolf, P. D., D. L. Rollins, T. F. Blitchington, R. E. Ideker, and W. M. Smith. 1990. Design for a 512 Channel Cardiac Mapping System, Edited by D. C. Mikulecky and A. M. Clarke. Proceedings of the Fall 1990 Annual Meeting of the Biomedical Engineering Society.Google Scholar

Copyright information

© Biomedical Engineering Society 2002

Authors and Affiliations

  • Adam L. Muzikant
    • 1
    • 2
  • Edward W. Hsu
    • 1
  • Patrick D. Wolf
    • 1
  • Craig S. Henriquez
    • 1
  1. 1.Department of Biomedical EngineeringDuke UniversityDurham
  2. 2.Physiome Sciences, Inc.Princeton

Personalised recommendations