Annals of Biomedical Engineering

, Volume 30, Issue 4, pp 447–460 | Cite as

Fluid Dynamics, Wall Mechanics, and Oxygen Transfer in Peripheral Bypass Anastomoses

  • Karl Perktold
  • Armin Leuprecht
  • Martin Prosi
  • Thomas Berk
  • Martin Czerny
  • Wolfgang Trubel
  • Heinrich Schima


Intimal hyperplasia at vascular anastomoses seems to be promoted by altered flow conditions and stress distributions within the anastomotic region. In order to gain deeper insight into postoperative disease processes, and subsequently, to contribute to the development of improved vascular reconstructions, detailed studies, also on local flow dynamics and related mass transport and wall mechanical effects, are required. In context with in vivo studies, computer simulation based on casts of femoro-popliteal bypasses implanted into sheep were performed to analyze the flow dynamics, the oxygen transport, and the wall and suture mechanics in anatomically correct bypass configurations related to three established surgical techniques and resulting geometries (conventional type anastomosis, Taylor-patch and Miller-cuff anastomoses with venous interposition grafts of different modifications). The influence of geometry, compliance of the graft, the interponated vein patch and vein cuff, and of the artery was included. Time-dependent, three-dimensional Navier–Stokes equations describing the flow field, and a nonlinear shell structure for the vessel walls were coupled using finite element methods. The numerical results demonstrate nonphysiological flow patterns in the anastomotic region. Strongly skewed axial velocity profiles and secondary velocities occur in the junction region. In the Miller-cuff a vortex may induce a wash-out effect which protects the host artery. On the artery floor opposite the junction flow separation and zones of recirculation were found. The analysis of oxygen transport illustrates a correlation between zones of low wall shear stress and reduced oxygen flux into the wall. Wall mechanics show that increased compliance mismatch leads to increased and discontinuous intramural stresses. Comparison to histomorphological findings on intimal hyperplasia shows certain correlations, particularly increased compliance mismatch has a proliferate influence on suture line hyperplasia. The reduction of compliance mismatch using vein interposition results in decreased generation of intimal hyperplasia, and therefore, contributes to improvement of patency rates, while the geometrical modification and the resulting change of the flow pattern seems to be less important for the growth of anastomotic intimal hyperplasia. © 2002 Biomedical Engineering Society.

PAC2002: 8719Uv, 8719Rr, 8780Rb, 8710+e

e-PTFE distal bypass anastomoses Anastomotic intimal hyperplasia Hemodynamics Compliance mismatch Intramural stresses 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abbott, W. M., J. Megerman, J. E. Hassan, G. L'Italien, and D. F. Warnock. Effect of compliance mismatch on vascular graft patency. J. Vasc. Surg. 5:376–382, 1987.Google Scholar
  2. 2.
    Black, L. H., J. R. Radbill, and D. W. Crawford. Analysis of oxygen transport from pulsatile, viscous blood flow to diseased coronary arteries of man. J. Biomech. 10:763–774, 1977.Google Scholar
  3. 3.
    Ballyk, P. D., C. Walsh, J. Butany, and M. Ojha. Compliance mismatch may promote graft-artery intimal hyperplasia by altering suture-line stresses. J. Biomech. 31:229–237, 1998.Google Scholar
  4. 4.
    Bassiouny, H. S., S. White, S. Glagov, E. Choi, D. P. Giddens, and C. K. Zarins. Anastomotic intimal hyperplasia: Mechanical injury or flow induced. J. Vasc. Surg. 15:708–717, 1992.Google Scholar
  5. 5.
    Batson, R. C., V. S. Sottiurai, and C. C. Craighead. Linton patch angioplasty: An adjunct to distal bypass with polytetrafluoroethylene grafts. Ann. Surg. 199:684–693, 1984.Google Scholar
  6. 6.
    Brooks, A. N., and T. J. R. Hughes. Streamline upwind/ Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 32:199–259, 1982.Google Scholar
  7. 7.
    Caro, C. G., D. J. Doorly, M. Tarnawski, K. T. Scott, Q. Long, and C. L. Dumoulin. Nonplanar geometry and nonplanar type flow at sites of arterial curvature and branching implications for arterial biology and disease. In: Biological Flows, edited by M. Y. Jaffrin and C. G. Caro. London: Plenum, 1996, pp. 69–81.Google Scholar
  8. 8.
    Dobrin, P. B. Polypropylene suture stresses after closure of longitudinal arteriotomy. J. Vasc. Surg 7:423–428, 1988.Google Scholar
  9. 9.
    Ethier, C. R., S. Prakash, D. A. Steinman, R. L. Leask, G. G. Couch, and M. Ojha. Steady flow separation patterns in a 45 degree junction. J. Fluid Mech. 411:1–38, 2000.Google Scholar
  10. 10.
    Ethier, C. R., D. A. Steinman, X. Zhang, S. R. Karpik, and M. Ojha. Flow wave form effects on end-to-side anastomotic flow patterns. J. Biomech. 31:609–617, 1998.Google Scholar
  11. 11.
    Fei, D. Y., J. D. Thomas, and S. E. Rittgers. The effect of angle and flow rate upon hemodynamics in distal vascular graft anastomoses: A numerical model study. J. Biomech. Eng. 116:331–336, 1994.Google Scholar
  12. 12.
    Hofer, M., and K. Perktold. Vorkonditionierter konjugierter Gradienten Algorithmus für große schlecht konditionierte unsymmetrische Gleichungssysteme. Suppl. Vol. Z. Angew. Math. Mech. 75:SII:641–642, 1995.Google Scholar
  13. 13.
    Hofer, M., G. Rappitsch, K. Perktold, W. Trubel, and H. Schima. Numerical study of wall mechanics and fluid dynamics in end-to-side anastomosis and correlation to intimal hyperplasia. J. Biomech. 29:1297–1308, 1996.Google Scholar
  14. 14.
    Hughes, P. E., and T. V. How. Effects of geometry and flow division on flow structures in models of the distal end-to-side anastomosis. J. Biomech. 29:855–872, 1996.Google Scholar
  15. 15.
    Hughes, T. J. R., W. K. Liu, and T. K. Zimmermann. Lagrangian-Eulerian finite element formulation in incompressible viscous flows. Comput. Methods Appl. Mech. Eng. 29:329–349, 1981.Google Scholar
  16. 16.
    Imparato, A. M., A. Bracco, G. E. Kim, and R. Zeff. Intimal and neointimal fibrous proliferation causing failure of arterial reconstruction. Surgery (St. Louis) 72:1007–1017, 1972.Google Scholar
  17. 17.
    Keynton, R. S., S. E. Rittgers, and M. C. S. Shu. Hemodynamic effects of angle and flow rate within distal vascular graft anastomoses. In: Biofluid Mechanics: Proceedings of the Third Mid-Atlantic Conference on Biofluid Mechanics, 459 Peripheral Bypass Anastomoses edited by D. J. Schneck and C. L. Lucas. New York: University Press, 1990, pp. 227–236.Google Scholar
  18. 18.
    Kissin, M., N. Kansal, P. J. Pappas, D. O. DeFouw, W. N. Durán, and R. W. Hobsen. Vein interposition cuffs decrease the intimal hyperplastic response of polytetrafluorethylene bypass grafts. J. Vasc. Surg. 31:69–83, 2000.Google Scholar
  19. 19.
    Kleinstreuer, C., M. Lei, and J. P. Archie, Jr. Flow input wave form effects on the temporal and spatial wall shear stress gradients in a femoral graft-artery connector. J. Biomech. Eng. 118:506–510, 1996.Google Scholar
  20. 20.
    Koiter, W. T., and J. C. Simmonds. Foundations of shell theory. In: Proc. 13th Int. Congress Theor. Appl. Mech. Berlin: Springer, 1973, pp. 150–176.Google Scholar
  21. 21.
    Lei, M., C. Kleinstreuer, and J. P. Archie, Jr. Geometric design improvements for femoral graft-artery junctions mitigating restenosis. J. Biomech. 29:1605–1614, 1996.Google Scholar
  22. 22.
    Lemson, M. S., J. H. M. Tordoir, M. J. A. P. Daemen, and P. J. E. H. M. Kitslaar. Intimal hyperplasia in vascular grafts. Eur. J. Vasc. Endovasc. Surg. 19:336–350, 2000.Google Scholar
  23. 23.
    Leuprecht, A., K. Perktold, M. Prosi, T. Berk, W. Trubel, and H. Schima. Numerical study of hemodynamics and wall mechanics in distal end-to-side anastomoses of bypass grafts. J. Biomech. 35:225–236, 2002.Google Scholar
  24. 24.
    Lever, J. M. Mass transport through the walls of arteries and veins. In: Biological Flows, edited by M. Y. Jaffrin and C. G. Caro. New York: Plenum, 1995, pp. 177–198.Google Scholar
  25. 25.
    LoGerfo, F. W., W. C. Quist, M. D. Nowak, H. M. Crawshaw, and C. C. Haudenschild. Downstream anastomotic hyperplasia: A mechanism for failure in Dacron arterial grafts. Ann. Surg. 197:479–483, 1983.Google Scholar
  26. 26.
    Loth, F., S. A. Jones, D. P. Giddens, H. S. Bassiouny, S. Glagov, and C. K. Zarins. Measurements of velocity and wall shear stress inside a PTFE vascular graft model under steady flow conditions. J. Biomech. Eng. 119:187–194, 1997.Google Scholar
  27. 27.
    Miller, J. H., R. K. Foreman, L. Ferguson, and I. Faris. Interposition vein cuff for anastomosis of prosthesis to small artery. Aust. N.Z. J. Surg. 54:283–285, 1984.Google Scholar
  28. 28.
    Moore, J. A., D. A. Steinman, S. Prakash, K. Johnston, and C. R. Ethier. A numerical study of blood flow patterns in anatomically realistic and simplified end-to-side anostomoses. J. Biomech. Eng. 121:265–272, 1999.Google Scholar
  29. 29.
    Noori, N., R. Scherer, K. Perktold, M. Czerny, G. Karner, W. Trubel, P. Polterauer, and H. Schima. Blood flow in distal end-to-side anastomoses with PTFE and a venous patch: Results of an in vitro flow visualization study. Eur. J. Endovasc. Surg. 18:191–200, 1999.Google Scholar
  30. 30.
    Ojha, M. Wall shear stress temporal gradient and anastomotic intimal hyperplasia. Circ. Res. 74:1227–1231, 1994.Google Scholar
  31. 31.
    Ojha, M., R. S. C. Cobbold, and K. W. Johnston. Influence of angle on wall shear stress distribution for an end-to-side anastomosis. J. Vasc. Surg. 19:1067–1073, 1994.Google Scholar
  32. 32.
    Perktold, K., M. Hofer, G. Karner, W. Trubel, and H. Schima. Computer simulation of vascular fluid dynamics and mass transport: Optimum design of arterial bypass anastomoses. In: Computational Fluid Dynamics' 98, edited by K. D. Papailiou et al. New York: Wiley, 1998, Vol. 2, pp. 484–489.Google Scholar
  33. 33.
    Perktold, K., M. Hofer, G. Rappitsch, M. Löw, B. D. Kuban, and M. H. Friedman. Validated computation of physiologic flow in a realistic coronary artery branch. J. Biomech. 31:217–228, 1998.Google Scholar
  34. 34.
    Perktold, K., and G. Rappitsch. Mathematical modeling of local arterial flow and vessel mechanics. In: Computational Methods for Fluid-Structure Interaction, edited by J. Crolet and R. Ohayon. New York: Wiley, 1994, pp. 230–245.Google Scholar
  35. 35.
    Perktold, K., H. Tatzl, and G. Rappitsch. Flow dynamic effect of the anastomotic angle: A numerical study of pulsatile flow in vascular graft anastomoses models. Technol. Health Care 1:197–207, 1994.Google Scholar
  36. 36.
    Pevec, W. C., G. J. L'Italien, J. Megerman, R. P. Cambria, and W. M. Abbott. Abnormal wall strain distal end-to-side anastomoses. Ann. Vasc. Surg. 7:14–20, 1993.Google Scholar
  37. 37.
    Rittgers, S. E., P. E. Karayannacos, J. F. Guy, R. M. Nerem, G. M. Shaw, J. R. Hostetler, and J. S. Vasko. Velocity distribution and intimal proliferation in autologuous vein grafts in dogs. Circ. Res. 42, 792–801, 1978.Google Scholar
  38. 38.
    Sottiurai, V. S., J. S. T. Yao, R. C. Baston, S. L. Sue, R. Jones, and Y. A. Nakamura. Distal anastomotic intimal hyperplasia: Histological character and biogenesis. Ann. Vasc. Surg. 3:26–33, 1989.Google Scholar
  39. 39.
    Steinman, D. A., and C. R. Ethier. Numerical modelling of flow in a distensible end-to-side anastomosis. J. Biomech. Eng. 116:294–301, 1994.Google Scholar
  40. 40.
    Tarbell, J. M. Bioengineering studies of the endothelial transport barrier. BMS Bull. 17:35–39, 1993.Google Scholar
  41. 41.
    Taylor, R. S., A. Loh, R. J. McFarland, M. Cox, and J. F. Chester. Improved technique for polytetrafluoroethylene bypass grafting: Long-term results using anastomotic vein patches. Br. J. Surg. 79:348–354, 1992.Google Scholar
  42. 42.
    Trubel, W., A. Moritz, H. Schima, F. Raderer, R. Scherer, R. Ullrich, U. Losert, and P. Polterauer. Compliance and formation of distal anastomotic intimal hyperplasia in dacron mesh tube constricted veins used as arterial bypass grafts. ASAIO J. 40:M273–M278, 1994.Google Scholar
  43. 43.
    Trubel, W., H. Schima, A. Moritz, F. Raderer, A. Windisch, R. Ullrich, U. Windberger, U. Losert, and P. Polterauer. Compliance mismatch and formation of distal anastomotic intimal hyperplasia in externally stiffened and lumen-adapted venous grafts. Eur. J. Vasc. Endovasc. Surg. 10:1–9, 1995.Google Scholar
  44. 44.
    White, S., C. K. Zarins, D. P. Giddens, H. Bassiouny, F. Loth, S. A. Jones, and S. Glagov. Hemodynamic patterns in two models of end-to-side vascular bypass anastomoses: Effects of pulsability, flow division, Reynolds number and hood length. J. Biomech. Eng. 115:104–111, 1993.Google Scholar
  45. 45.
    Windberger, U., V. Ribitsch, K. L. Resch, and U. Losert. The viscoelasticity of blood and plasma in pig, horse, dog, ox, and sheep. J. Exp. Anim. Sci. 36:89–95, 1994.Google Scholar

Copyright information

© Biomedical Engineering Society 2002

Authors and Affiliations

  • Karl Perktold
    • 1
  • Armin Leuprecht
    • 1
  • Martin Prosi
    • 1
  • Thomas Berk
    • 1
  • Martin Czerny
    • 2
  • Wolfgang Trubel
    • 3
  • Heinrich Schima
    • 4
  1. 1.Institute of MathematicsGraz University of TechnologyGrazAustria
  2. 2.Department of Cardiothoracic SurgeryUniversity of ViennaViennaAustria
  3. 3.Department of Vascular SurgeryUniversity of ViennaViennaAustria
  4. 4.Institute of Biomedical Engineering and Ludwig Boltzmann Institute of Cardiosurgical ResearchUniversity of ViennaViennaAustria

Personalised recommendations