Advertisement

Annals of Biomedical Engineering

, Volume 30, Issue 4, pp 461–471 | Cite as

Computational Modeling of Mass Transfer and Links to Atherosclerosis

  • C. Ross Ethier
Article

Abstract

In the context of atherogenesis, mass transport refers to the movement of atherogenic molecules from flowing blood into the artery wall, or vice versa. Although LDL transport clearly plays a role in atherosclerotic plaque development, it is much less clear whether abnormalities in mass transfer patterns are in themselves atherogenic. A powerful way of addressing this question is through computational modeling, which provides detailed descriptions of local mass transport features. Here we briefly review the strategy and some of the pros and cons of such a modeling approach, and then focus on results gained from studies in a variety of arterial geometries. The general picture is that zones of hypoxia (low oxygen transport from blood to wall) and elevated LDL tend to colocalize with each other, and with areas of atherosclerotic lesion development and/or intimal thickening. The picture is complicated by the fact that such zones also tend to have “abnormal” wall shear stress patterns, which are also believed to be atherogenic. Taken together, these results suggest, but do not prove, a role for mass transport in atherogenesis. © 2002 Biomedical Engineering Society.

PAC2002: 8719Tt, 8719Xx, 8710+e

Hemodynamics Mass transfer Numerical modeling Atherogenesis LDL transport Oxygen transport Endothelium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Asakura, T., and T. Karino. Flow patterns and spatial distribution of atherosclerotic lesions in human coronary arteries. Circ. Res. 66:1045–1066, 1990.Google Scholar
  2. 2.
    Back, L. H., J. R. Radbill, and D. W. Crawford. Analysis of oxygen transport from pulsatile viscous blood flow to diseased coronary arteries of man. J. Biomech. 10:763–774, 1977.Google Scholar
  3. 3.
    Bird, R. B., W. E. Stewart, and E. N. Lightfoot. Transport Phenomena. New York: Wiley, 1960.Google Scholar
  4. 4.
    Brooks, A. N., and T. J. R. Hughes. Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 32:199–259, 1982.Google Scholar
  5. 5.
    Caro, C. G. Transport of 14C-4 cholesterol between intraluminal serum and artery wall in isolated dog common carotid artery. J. Physiol. (London) 233:37P–38P, 1973.Google Scholar
  6. 6.
    Caro, C. G. Transport of 14C-4-cholesterol between perfusing serum and dog common carotid artery: A shear dependent process. Cardiovasc. Res. 8:194–203, 1974.Google Scholar
  7. 7.
    Caro, C. G., J. M. Fitz-Gerald, and R. C. Schroter. Atheroma and arterial wall shear. Observation, correlation and proposal of a shear dependent mass, transfer mechanism for atherogenesis. Proc. R. Soc. London, Ser. B 177:109–159, 1971.Google Scholar
  8. 8.
    Caro, C. G., J. M. Fitz-Gerald, and R. C. Schroter. Proposal of a shear dependent mass transfer mechanism for atherogenesis. Clin. Sci. 40:5P, 1971.Google Scholar
  9. 9.
    Caro, C. G., and R. M. Nerem. Transport of 14 C-4-cholesterol between serum and wall in the perfused dog common carotid artery. Circ. Res. 32:187–205, 1973.Google Scholar
  10. 10.
    Celletti, F. L., J. M. Waugh, P. G. Amabile, A. Brendolan, P. R. Hilfiker, and M. D. Dake. Vascular endothelial growth factor enhances atherosclerotic plaque progression. Nat. Med. (N.Y.) 7:425–429, 2001.Google Scholar
  11. 11.
    Crawford, D. W., L. H. Back, and M. A. Cole. In vivo oxygen transport in the normal rabbit femoral arterial wall. J. Clin. Invest. 65:1498–1508, 1980.Google Scholar
  12. 12.
    Crawford, D. W., and D. H. Blankenhorn. Arterial wall oxygenation, oxyradicals, and atherosclerosis. Atherosclerosis 89:97–108, 1991.Google Scholar
  13. 13.
    Cuvelier, C., A. Segal, and A. A. van Steenhoven. Finite Element Methods and Navier-Stokes Equations. Dordrecht: Reidel, 1988.Google Scholar
  14. 14.
    Deng, X., M. King, and R. Guidoin. Localization of atherosclerosis in arterial junctions. Modeling the release rate of low density lipoprotein and its breakdown products accumulated in blood vessel walls. ASAIO J. 39:M489–M495, 1993.Google Scholar
  15. 15.
    Deng, X., M. W. King, and R. Guidoin. Localization of atherosclerosis in arterial junctions. Concentration distribution of low density lipoproteins at the luminal surface in regions of disturbed flow. ASAIO J. 41:58–67, 1995.Google Scholar
  16. 16.
    Deng, X., Y. Marois, T. How, Y. Merhi, M. King, R. Guidoin, and T. Karino. Luminal surface concentration of lipoprotein (LDL) and its effect on the wall uptake of cholesterol by canine carotid arteries [published erratum appears in J. Vasc. Surg. 22:648, 1995]. J. Vasc. Surg. 21:135–145, 1995.Google Scholar
  17. 17.
    Deng, X., Y. Marois, M. W. King, and R. Guidoin. Uptake of 3H-7-cholesterol along the arterial wall at an area of stenosis. Asaio J. 40:186–191, 1994.Google Scholar
  18. 18.
    Deng, X., P. W. Stroman, and R. Guidoin. Theoretical modelling of the release rate of low-density lipoproteins and their breakdown products at arterial stenoses. Clin. Invest. Med. 19:83–91, 1996.Google Scholar
  19. 19.
    Dirksen, M. T., A. C. van der Wal, F. M. van den Berg, C. M. van der Loos, and A. E. Becker. Distribution of inflammatory cells in atherosclerotic plaques relates to the direction of flow. Circulation 98:2000–2003, 1998.Google Scholar
  20. 20.
    Ehsan, A., M. J. Mann, G. Dell'Acqua, and V. J. Dzau. Long-term stabilization of vein graft wall architecture and prolonged resistance to experimental atherosclerosis after E2F decoy oligonucleotide gene therapy. J. Thorac. Cardiovasc. Surg. 121:714–722, 2001.Google Scholar
  21. 21.
    Fatouraee, N., X. Deng, A. De Champlain, and R. Guidoin. Concentration polarization of low density lipoproteins (LDL) in the arterial system. Ann. N.Y. Acad. Sci. 858:137–146, 1998.Google Scholar
  22. 22.
    Frank, S., M. Gauster, J. Strauss, A. Hrzenjak, and G. M. Kostner. Adenovirus-mediated apo(a)-antisense-RNA expression efficiently inhibits apo(a) synthesis in vitro and in vivo. Gene Therapy 8:425–430, 2001.Google Scholar
  23. 23.
    Friedman, M. H., O. J. Deters, F. F. Mark, C. B. Bargeron, and G. M. Hutchins. Arterial geometry affects hemodynamics. A potential risk factor for atherosclerosis. Atherosclerosis (Berlin) 46:225–231, 1983.Google Scholar
  24. 24.
    Friedman, M. H., and L. W. Ehrlich. Effect of spatial variations in shear on diffusion at the wall of an arterial branch. Circ. Res. 37:446–454, 1975.Google Scholar
  25. 25.
    Guretzki, H. J., K. D. Gerbitz, B. Olgemoller, and E. Schleicher. Atherogenic levels of low density lipoprotein alter the permeability and composition of the endothelial barrier. Atherosclerosis 107:15–24, 1994.Google Scholar
  26. 26.
    Hajjar, D. P., I. C. Farber, S. C. Smith, and Biophys. Oxygen tension within the arterial wall: Relationship to altered bioenergetic metabolism and lipid accumulation. Arch. Biochem. 262:375–380, 1988.Google Scholar
  27. 27.
    Huang, Y., D. Rumschitzki, S. Chien, and S. Weinbaum. A fiber matrix model for the growth of macromolecular leakage spots in the arterial intima. J. Biomech. Eng. 116:430–445, 1994.Google Scholar
  28. 28.
    Huang, Z. J., and J. M. Tarbell. Numerical simulation of mass transfer in porous media of blood vessel walls. Am. J. Physiol. 273:H464–H477, 1997.Google Scholar
  29. 29.
    Inoue, M., H. Itoh, M. Ueda, T. Naruko, A. Kojima, R. Komatsu, K. Doi, Y. Ogawa, N. Tamura, K. Takaya, T. Igaki, J. Yamashita, T. H. Chun, K. Masatsugu, A. E. Becker, and K. Nakao. Vascular endothelial growth factor (VEGF) Expression in human coronary atherosclerotic lesions: Possible pathophysiological significance of VEGF in progression of atherosclerosis. Circulation 98:2108–2116, 1998.Google Scholar
  30. 30.
    Kaazempur-Mofrad, M. R., and C. R. Ethier. Mass transport in an anatomically realistic human right coronary artery. Ann. Biomed. Eng. 29:121–127, 2001.Google Scholar
  31. 31.
    Karner, G., and K. Perktold. Effect of endothelial injury and increased blood pressure on albumin accumulation in the arterial wall: A numerical study. J. Biomech. 33:709–715, 2000.Google Scholar
  32. 32.
    Karner, G., K. Perktold, and H. P. Zehentner. Computational modeling of macromolecule transport in the arterial wall. Comput. Methods Biomech. Biomed. Eng. (in press).Google Scholar
  33. 33.
    Lei, M., C. Kleinstreuer, and G. A. Truskey. A focal stress gradient-dependent mass transfer mechanism for atherogenesis in branching arteries. Med. Eng. Phys. 18:326–332, 1996.Google Scholar
  34. 34.
    Lever, M. J., J. M. Tarbell, and C. G. Caro. The effect of luminal flow in rabbit carotid artery on transmural fluid transport. Exp. Physiol. 77:553–563, 1992.Google Scholar
  35. 35.
    Ma, P., X. Li, and D. N. Ku. Convective mass transfer at the carotid bifurcation. J. Biomech. 30:565–571, 1997.Google Scholar
  36. 36.
    Ma, P., X. Lu, and D. N. Ku. Heat and mass transfer in a separated flow region for high Prandtl and Schmidt numbers under pulsatile flow conditions. Int. J. Heat Mass Transf. 37:2723–2736, 1994.Google Scholar
  37. 37.
    Mahinpey, M., M. Ojha, K. W. Johnston, and O. Trass. Electrochemical mass transfer measurements in a Y-bifurcation model. Can. J. Chem. 78:902–907, 2000.Google Scholar
  38. 38.
    Moore, J. A., and C. R. Ethier. Oxygen mass transfer calculations in large arteries. J. Biomech. Eng. 119:469–475, 1997.Google Scholar
  39. 39.
    Naiki, T., and T. Karino. Flow-dependent concentration polarization of plasma proteins at the luminal surface of a semipermeable membrane. Biorheology 36:243–256, 1999.Google Scholar
  40. 40.
    Phelps, J. E., and N. DePaola. Spatial variations in endothelial barrier function in disturbed flows in vitro. Am. J. Physiol. 278:H469–H476, 2000.Google Scholar
  41. 41.
    Qiu, Y., and J. M. Tarbell. Numerical simulation of oxygen mass transfer in a compliant curved tube model of a coronary artery. Ann. Biomed. Eng. 28:26–38, 2000.Google Scholar
  42. 42.
    Rappitsch, G., and K. Perktold. Computer simulation of convective diffusion processes in large arteries. J. Biomech. 29:207–215, 1996.Google Scholar
  43. 43.
    Rappitsch, G., and K. Perktold. Pulsatile albumin transport in large arteries: A numerical simulation study. J. Biomech. Eng. 118:511–519, 1996.Google Scholar
  44. 44.
    Rappitsch, G., K. Perktold, and E. Pernkopf. Numerical modelling of shear-dependent mass transfer in large arteries. Int. J. Numer. Methods Fluids 25:847–857, 1997.Google Scholar
  45. 45.
    Schneiderman, G., C. G. Ellis, and T. K. Goldstick. Mass transport to walls of stenosed arteries: Variation with Reynolds number and blood flow separation. J. Biomech. s12:869–877, 1979.Google Scholar
  46. 46.
    Smedby, O. Do plaques grow upstream or downstream?: An angiographic study in the femoral artery. Arterioscler. Thromb. 17:912–918, 1997.Google Scholar
  47. 47.
    Stangeby, D. K., and C. R. Ethier. Computational analysis of coupled blood-wall arterial LDL transport. ASME J. Biomech. Eng. 124:1–8, 2002.Google Scholar
  48. 48.
    Stangeby, D. K., and C. R. Ethier. Coupled computational analysis of arterial LDL transport—Effects of hypertension. Comput. Methods Biomech. Bioeng. (in press).Google Scholar
  49. 49.
    Tarbell, J. M., and Y. Qiu. Arterial wall mass transport: The possible role of blood phase resistance in the localization of arterial disease. In: The Biomedical Engineering Handbook, 2nd ed., edited by J. D. Bronzino. New York: CRC Press, 2000, Chap. 100.Google Scholar
  50. 50.
    Truskey, G. A., W. L. Roberts, R. A. Herrmann, and R. A. Malinauskas. Measurement of endothelial permeability to 25I-low density lipoproteins in rabbit arteries by use of en face preparations. Circ. Res. 71:883–897, 1992.Google Scholar
  51. 51.
    Wada, S., and T. Karino. Theoretical study on flow-dependent concentration polarization of low density lipoproteins at the luminal surface of a straight artery. Biorheology 36:207–223, 1999.Google Scholar
  52. 52.
    Wada, S., and T. Karino. Computational study on LDL transfer from flowing blood to arterial walls. In: Clinical Applications of Computational Mechanics to the Cardiovascular System, edited by T. Yamaguchi. Tokyo: Springer, 2000, pp. 157–173.Google Scholar

Copyright information

© Biomedical Engineering Society 2002

Authors and Affiliations

  • C. Ross Ethier
    • 1
  1. 1.Department of Mechanical and Industrial EngineeringUniversity of TorontoTorontoCanada

Personalised recommendations