Annals of Biomedical Engineering

, Volume 30, Issue 4, pp 498–508 | Cite as

Fluid and Solid Mechanical Implications of Vascular Stenting

  • James E. MooreJr.
  • Joel L. Berry


Vascular stents have emerged as an effective treatment for occlusive vascular disease. Despite their success and widespread use, outcomes for patients receiving stents are still hampered by thrombosis and restensosis. As arteries attempt to adapt to the mechanical changes created by stents, they may in fact create a new flow-limiting situation similar to that which they were intended to correct. In vitro fluid mechanics and solid mechanics studies of stented vessels have revealed important information about how stents alter the mechanical environment in the arteries into which they are placed. Adverse nonlaminar flow patterns have been demonstrated as well as remarkably high stress concentrations in the vessel wall. In vivo studies of stented vessels have also shown a strong relationship between stent design and their dynamic performance within arteries. Alterations in pressure and flow pulses distal to the stent have been observed, as well as regional changes in vascular compliance. Considering the influence of flow and stress on the vascular response and the suboptimal clinical outcomes associated with stenting, knowledge gained from stent/artery mechanics studies should play an increasingly important role in improving the long-term patency of these devices. © 2002 Biomedical Engineering Society.

PAC2002: 8719Rr, 8780-y, 8719Uv

Arteries Atherosclerosis Interventional radiology Stress Hemodynamics Restenosis Intimal hyperplasia 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abbott, W. M., J. E. Megerman, J. E. Hasson, G. L'Italien, and D. F. Warnock. Effect of compliance mismatch on vascular graft patency. J. Vasc. Surg. 5:376–382, 1987.Google Scholar
  2. 2.
    Back, M., G. Kopchok, M. Mueller, D. Cavaye, C. Donayre, and R. A. White. Changes in arterial wall compliance after endovascular stenting. J. Vasc. Surg. 19:905–911, 1994.Google Scholar
  3. 3.
    Ballyk, P. D., C. Walsh, J. Butany, and M. Ojha. Compliance mismatch may promote graft-artery intimal hyperplasia by altering suture-line stresses. J. Biomech. 31:229–237, 1998.Google Scholar
  4. 4.
    Banes, A. J. Mechanical strain and the mammalian cell. In: Physical Forces and the Mammalian Cell, edited by J. A. Frangos. New York: Academic, 1993, pp. 81–123.Google Scholar
  5. 5.
    Berry, J. L., E. Manoach, C. Mekkaoui, P. H. Rolland, J. E. Moore, Jr. and A. Rachev. Hemodynamics and wall mechanics of a compliance matching stent: In vitro and in vivo analysis. J. Vasc. Intervent Radiol. 13:97–105, 2002.Google Scholar
  6. 6.
    Berry, J. L., J. E. Moore, Jr., V. S. Newman, and W. D. Routh. In vitro flow visualization in stented arterial segments. J. Vasc. Invest. 3:63–68, 1997.Google Scholar
  7. 7.
    Berry, J. L., A. Santamarina, J. E. Moore, Jr., S. Roychowdhury, and W. D. Routh. Experimental and computational flow evaluation of coronary stents. Ann. Biomed. Eng. 28:386–398, 2000.Google Scholar
  8. 8.
    Berthiaume, F., and J. A. Frangos. Effects of flow on anchorage-dependent mammalian cells-secreted products. In: Physical Forces and the Mammalian Cell, edited by J. A. Frangos. New York: Academic, 1993, pp. 139–192.Google Scholar
  9. 9.
    Cantelmo, N. L., W. C. Quist, and F. W. Logerfo. Quantitative analysis of anastomotic intimal hyperplasia in paired dacron and PTFE grafts. J. Cardiovasc. Surg. 30:910–915, 1989.Google Scholar
  10. 10.
    Delfino, A., N. Stergiopulos, J. E. Moore, Jr., and J. J. Meister. Residual strain effects on the stress field in a thick wall finite element model of the human carotid bifurcation. J. Biomech. 30:777–786, 1997.Google Scholar
  11. 11.
    Depaola, N., M. A. Gimbrone, P. F. Davies, and C. F. Dewey. Vascular endothelium responds to fluid shear stress gradients. Arterioscler. Thromb. 12:1254–1257, 1992.Google Scholar
  12. 12.
    DeWeese, J. A. Anastomotic neointimal fibrous hyperplasia. In: Complications in Vascular Surgery, edited by V. M. Brenhard and J. B. Towne. Orlando, 1985.Google Scholar
  13. 13.
    Dotter, C. T. Transluminally placed coilspring endarterial tube grafts: Long term patency in canine popliteal artery. Invest. Radiol. 4:329–332, 1969.Google Scholar
  14. 14.
    Dotter, C. T., R. W. Buschman, M. K. McKinney, and J. Rösch. Transluminal expandable nitinol coil stent grafting: Preliminary report. Radiology 147:259–260, 1983.Google Scholar
  15. 15.
    Duerig, T. W., D. E. Tolomeo, and M. Wholey. An overview of superelastic stent design. Min. Invas. Ther. Allied Technol. 9:235–246, 2000.Google Scholar
  16. 16.
    Echave, V., A. R. Koornick, M. Haimov, and J. H. Jacobson. Intimal hyperplasia as a complication of the use polytetrafluoroethylene grafts for femoral-popliteal bypass. Surgery (St. Louis) 86:791–798, 1979.Google Scholar
  17. 17.
    Edelman, E. R., and C. Rogers. Pathobiologic responses to stenting. Am. J. Cardiol. 81:4E–6E, 1998.Google Scholar
  18. 18.
    Fabregues, S., K. Baijens, R. Rieu, and P. Bergeron. Hemodynamicsof endovascular prostheses. J. Biomech. 31:45–54, 1998.Google Scholar
  19. 19.
    Fischman, D. L., M. B. Leon, D. S. Baim, R. A. Schatz, M. P. Savage, I. Penn, and K. Detre. A randomized comparison of coronary artery stent placement and balloon angioplasty in the treatment of coronary artery disease. N. Engl. J. Med. 331:496–501, 1994.Google Scholar
  20. 20.
    Formaggia, L., F. Nobile, and A. Quarteroni, A one dimensional model for blood flow: Application to vascular prosthesis. In: MSCOM 2000, edited by T. Miyoshi. Berlin: Springer, 2001.Google Scholar
  21. 21.
    Fung, Y. C. What are residual stresses doing in our blood vessels? Ann. Biomed. Eng. 19:237–249, 1991.Google Scholar
  22. 22.
    He, X., and D. N. Ku. Pulsatile flow in the human left coronary artery bifurcation: average conditions. J. Biomech. Eng. 118:74–82, 1996.Google Scholar
  23. 23.
    Heidekker, M. A., C. R. White, N. L'Heureux, and J. A. Frangos. Analysis of temporal shear stress gradients during the onset phase of flow over a backward-facing step. J. Biomech. Eng. (in press).Google Scholar
  24. 24.
    Henry, F. S. Flow in stented arteries. In: Intra-and Extracorporeal Cardiovascular Fluid Dynamics, edited by P. Verdonck and K. Perktold. Boston: WIT, 2000, pp. 333–364.Google Scholar
  25. 25.
    Hoffmann, R., G. S. Mintz, K. Kent, L. Satler, A. Pichard, J. Popma, and M. Leon. Serial intravascular ultrasound predictors of restenosis at the margins of Palmaz-Schatz stents. Am. J. Cardiol. 79:951–953, 1997.Google Scholar
  26. 26.
    Hoffman, R., G. S. Mintz, G. R. Dussaillant, J. J. Popma, A. D. Pichard, L. F. Satler, K. M. Kent, J. Griffin, and M. B. Leon. Patterns and mechanisms of in-stent restenosis. A serial intravascular ultrasound study. Circulation 94:1247–1254, 1996.Google Scholar
  27. 27.
    Humphrey, J., and S. Na. Elastodynamics and arterial wall stress. Ann. Biomed. Eng. (to be published).Google Scholar
  28. 28.
    Kastrati, A. J., J. Mehilli, J. Dirschinger, J. Pache, K. Ulm, H. Schühlen, M. Seyfarth, C. Schmitt, R. Blasini, F.-J. Neumann, and A. Schömig. Restenosis after coronary placement of various stent types. Am. J. Cardiol. 87:34–39, 2001.Google Scholar
  29. 29.
    Ku, D. N., D. P. Giddens, C. R. Zarins, and S. Glagov. Pulsatile flow and atherosclerosis in the human carotid bifurcation: Positive correlation between plaque localization and low and oscillating shear stress. Arteriosclerosis (Dallas) 5:293–302, 1985.Google Scholar
  30. 30.
    Logerfo, F. W., W. C. Quist, M. D. Nowak, H. M. Cranshaw, and C. C. Haudenschild. Downstream anastomotic hyperplasia: A mechanism of failure in dacron arterial grafts. Arch. Surg. (Chicago) 197:479–483, 1983.Google Scholar
  31. 31.
    Mohammed, Z., J. E. Moore, Jr., A. Rachev, J. L. Berry, and E. Manoach. Stress concentration reduction in stented arteries using compliance transitioning. Int. J. Cardiovasc. Med. Sci. 3:137–147, 2000.Google Scholar
  32. 32.
    Moore, Jr., J. E., C. Xu, S. Glagov, C. K. Zarins, and D. N. Ku. Fluid wall shear stress measurements in a model of the human abdominal aorta: Oscillatory behavior and the relationship to atherosclerosis. Arteriosclerosis (Dallas) 110:225–240, 1994.Google Scholar
  33. 33.
    Natarajan, S., and M. Mokhtarzadeh. A numerical and experimental study of periodic flow in a model of a corrugated vessel with application to stented arteries. Med. Eng. Phys. 22:555–566, 2000.Google Scholar
  34. 34.
    Palmaz, J. C., G. M. Richter, G. Noldge, G. W. Kauffmann, and W. Wenz. Intraluminal Palmaz stent implantation. The first clinical case report on a balloon-expanded vascular prosthesis. [German]. Radiologe 27:560–5633, 1987.Google Scholar
  35. 35.
    Palmaz, J. C., D. T. Kopp, and H. Hayashi. Normal and stenotic renal arteries: Experimental balloon-expandable intraluminal stenting. Radiology 164:705, 1987a.Google Scholar
  36. 36.
    Peacock, J., S. Hankins, T. Jones, and R. Lutz. Flow instabilities induced by coronary artery stents: Assessment with an in vitro pulse duplicator. J. Biomech. 28:17–26, 1995.Google Scholar
  37. 37.
    Perktold, K. Ann. Biomed. Eng. (to be published).Google Scholar
  38. 38.
    Rachev, A., E. Manoach, J. L. Berry, and J. E. Moore, Jr.. Model of stress induced remodeling of vessel segments adjacent to stents and artery/graft anastomoses. J. Theor. Biol. 206:429–443, 2000.Google Scholar
  39. 39.
    Rhee, K., and J. M. Tarbell. A study of the wall shear rate distribution near the end-to-end anastomosis of a rigid graft and compliant artery. J. Biomech. 27:329–338, 1994.Google Scholar
  40. 40.
    Rockwell, D. Vortex-body interactions. Annu. Rev. Fluid Mech. 30:199–229, 1998.Google Scholar
  41. 41.
    Rogers, C., and E. R. Edelman. Endovascular stent design dictates experimental restenosis and thrombosis. Circulation 91:2995–3001, 1995.Google Scholar
  42. 42.
    Rogers, C., M. A. Kjelsberg, P. Seifert, and E. R. Edelman. Heparin-coated stents eliminate mural thrombus deposition for days without affecting restenosis. (Abstract) Circulation 9(Suppl. 1):1–710, 1997Google Scholar
  43. 43.
    Rogers, C., D. Y. Tseng, J. C. Squire, and E. R. Edelman. Balloon-artery interactions during stent placement. Circ. Res. 84:378–383, 1999.Google Scholar
  44. 44.
    Rolland, P. H., A-B. Charifi, C. Verrier, H. Bodard, A. Friggi, P. Piquet, G. Moulin, and J.-M. Bartoli. Hemodynamics and wall mechanics after stent placement in swine iliac arteries: comparative results from six stent designs. Radiology 213:229–246, 1999.Google Scholar
  45. 45.
    Sato, M. Ann. Biomed. Eng. (to be published).Google Scholar
  46. 46.
    Schajer, G. S., S. I. Green, A. P. Davis, and Y. N. H. Hsiang. Influence of elastic nonlinearity on arterial anastomotic compliance. J. Biomech. Eng. 118:445–451, 1996.Google Scholar
  47. 47.
    Sigwart, U., J. Puel, V. Mirkovitch, F. Joffre, and L. Kappenberger. Intravascular stents to prevent occlusion and restenosis after transluminal angioplasty. N. Engl. J. Med. 316:701–706, 1987.Google Scholar
  48. 48.
    Simon, C., J. C. Palmaz, and E. A. Sprague. Influence of topography on endothelization of stents: Clues for new designs. J. Long-Term Effects Med. Implants 10:143–151, 2000.Google Scholar
  49. 49.
    Sprague, E. A., J. Luo, and J. C. Palmaz. Human aortic endothelial cell migration onto stent surfaces under static and flow conditions. J. Vasc. Interventional Radiology 8:83–92, 1997.Google Scholar
  50. 50.
    Stanek, B., D. Liepsch, and G. Pflugbeil. Flow studies of stents in models of the carotid artery. Third World Congress of Biomechanics. 1998, p. 206a.Google Scholar
  51. 51.
    Stewart, S. F. C., and D. J. Lyman. Effects of a vascular graft/natural artery compliance mismatch on pulsatile flow. J. Biomech. 25:297–310, 1992.Google Scholar
  52. 52.
    Sukavaneshvar, S., G. M. Rosa, and K. A. Solen. Enhancement of stent-induced thromboembolism by residual stenoses: Contribution of hemodynamics. Ann. Biomed. Eng. 28:182–193, 2000.Google Scholar
  53. 53.
    Tominaga, R., H. E. Kambic, H. Emoto, H. Harasaki, C. Sutton, and J. Hollman. Effects of design geometry of intravascular endoprostheses on stenosis rate in normal rabbits. Am. Heart J. 123:21–28, 1992.Google Scholar
  54. 54.
    Topol, E. J. Coronary-artery stents-gauging, gorging and gouging. N. Engl. J. Med. 339:1702–1704, 1998.Google Scholar
  55. 55.
    Truskey, G. A., K. M. Barber, T. C. Robey, L. A. Olivier, and M. P. Combs. Characterization of a sudden expansion flow chamber to study the response of endothelium to flow recirculation. J. Biomech. Eng. 117:203–210, 1995.Google Scholar
  56. 56.
    Truskey, G. A. et al. Effect of fluid shear stress on the permeability of the arterial endothelium. Ann. Biomed. Eng. (to be published).Google Scholar
  57. 57.
    Vernhet, H., J. M. Juan, R. Demaria, M. C. Oliva-Lauraire, J. P. Senac, and M. Dauzat. Acute changes in aortic wall mechanical properties after stent placement in arteries. J. Vasc. Interventional Radiology 11:634–638, 2000.Google Scholar
  58. 58.
    Walsh, P. W., F. Berkani, and J. E. Moore, Jr.Stented flow chamber for endothelial cell migration studies. European Society of Biomechanics, 2000.Google Scholar
  59. 59.
    Wentzel, J. J., D. M. Whelan, W. J. VanDerGiessen, H. M. VanBeusekom, I. Andhyiswara, P. W. Serruys, and C. J. Slager. Coronary stent implantation changes 3D vessel geometry and 3D shear stress distribution. J. Biomech. 33:1287–1295, 2000.Google Scholar
  60. 60.
    Xu, X., and M. W. Collins. Fluid dynamics in stents. In: Endoluminal Stenting, edited by U. Sigwart. New York: Saunders, 1996.Google Scholar

Copyright information

© Biomedical Engineering Society 2002

Authors and Affiliations

  • James E. MooreJr.
    • 1
  • Joel L. Berry
    • 2
  1. 1.Biomedical Engineering InstituteFlorida International UniversityMiami
  2. 2.Medical Engineering DepartmentWake Forest UniversityWinston Salem

Personalised recommendations