Annals of Biomedical Engineering

, Volume 29, Issue 12, pp 1064–1073 | Cite as

Structural and Radiological Parameters for the Nondestructive Characterization of Trabecular Bone

  • V. Pattijn
  • T. Van Cleynenbreugel
  • J. Vander Sloten
  • R. Van Audekercke
  • G. Van der Perre
  • M. Wevers

Abstract

Trabecular bone is characterized by compositional and organizational factors. The former include porosity at microlevel and mineralization. The latter refer to the trabecular architecture. Both determine the mechanical properties of the trabecular bone. The aim of this study is to investigate the relationship between the mechanical properties and the local HU value, the bone mineral density, the in vitro histomorphometric properties assessed by means of microcomputed tomography, and the Young's modulus determined by ultrasound measurement. Also the correlation between local HU values based on CT data of the full bone and HU values based on CT data of excised trabecular bone cylinders is investigated. Therefore density and strength related parameters of 22 trabecular bone cylinders retrieved from a fresh cadaver femur were measured by using different techniques. The mean HU value of the excised bone samples is very highly correlated with the pQCT density (R2=0.95) and the μCT-based morphometric parameter BV/TV (R2=0.95). The mean HU values, determined from the CT images of the planned and excised bone samples, are less highly correlated (R2=0.75). The Young's modulus EUS determined from the ultrasound measurement is highly correlated with the maximal stress σ max (R2=0.88) but not with the mechanically determined Young's modulus Emech (R2=0.67). The maximal stress σ max correlates well with the density parameters (R2 varies between 0.76 and 0.86). On the contrary the mechanically determined Young's modulus Emech does not correlate well with the density parameters (R2 varies between 0.52 and 0.56). The absorbed energy Eabs during the deformation is only highly correlated with the maximal stress σ max (R2=0.83). The inclusion of structural parameters besides a density related parameter did improve the prediction of the Young's modulus and the maximal stress. In conclusion, it seems that the HU value from clinical CT scanning is a good predictor of the local bone density and volume fraction. A combination of local density and a measure of the structural anisotropy is clearly needed to achieve good predictions of bone mechanics. © 2001 Biomedical Engineering Society.

PAC01: 8719Rr, 8759Ls, 4380Ev, 8759Fm, 4335Zc, 8170Cv

pQCT μCT Ultrasonography HU value Mechanical compression 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Alho, A., K. Strømsøe, and A. Høiseth. Pairwise strength relations´hips of cortical and cancellous bone in human femur: An autopsy study. Arch. Orthop. Trauma Surg. 114:211–214, 1995.Google Scholar
  2. 2.
    Alho, A., T. Husby, and A. Høiseth. Bone mineral content and mechanical strength. An ex vivo study on human femora at autopsy. Clin. Orthop. 227:292–297, 1988.Google Scholar
  3. 3.
    Ashman, R. B., and J. Y. Rho. Elastic modulus of trabecular bone material. J. Biomech. 21:177–181, 1988.PubMedGoogle Scholar
  4. 4.
    Ashman, R. B., J. D. Corin, and C. H. Turner. Elastic properties of cancellous bone: Measurement by an ultrasonic technique. J. Biomech. 20:979–986, 1987.PubMedGoogle Scholar
  5. 5.
    Behrens, J. C., P. S. Walker, and H. Shoji. Variations in strength and structure of cancellous bone at the knee. J. Biomech. 7:201–207, 1974.Google Scholar
  6. 6.
    Bentzen, S. M., I. Hvid, and J. Jorgensen. Mechanical strength of tibial trabecular bone evaluated by x-ray computed tomography. J. Biomech. 20:743–752, 1987.Google Scholar
  7. 7.
    Ciarelli, M. J., S. A. Goldstein, J. L. Kuhn, D. D. Cody, and M. B. Brown. Evaluation of orthogonal mechanical properties and density of human trabecular bone from the major metaphyseal regions with materials testing and computed tomography. J. Orthop. Res. 9:674–682, 1991.Google Scholar
  8. 8.
    Feldkamp, L. A., S. A. Goldstein, A. M. Parfitt, G. Jesion, and M. Kleerekoper. The direct examination of three-dimensional bone architecture in vitro by computed tomography. J. Bone Miner. Res. 4:3–11, 1989.Google Scholar
  9. 9.
    Genant, H. K., C. Gordon, Y. Jiang, T. F. Lang, T. M. Link, and S. Majumdar. Advanced imaging of bone macro and microstructure. Bone 25, 149–152, 1999.Google Scholar
  10. 10.
    Goulet, R. W., S. A. Goldstein, M. J. Ciarelli, J. L. Kuhn, M. B. Brown, and L. A. Feldkamp. The relationship between the structural and orthogonal compressive properties of trabecular bone. J. Biomech. 27:375–389, 1994.Google Scholar
  11. 11.
    Hangartner, T. N., J. J. Battista, and T. R. Overton. Performance evaluation of density measurements of axial and peripheral bone with x ray and gamma-ray computed tomography. Phys. Med. Biol. 32:1393–1406, 1987.Google Scholar
  12. 12.
    Harrigan, T. P., and R. W. Mann. Characterization of microstructural anisotropy in orthotropic materials using a second rank tensor. J. Mater. Sci. 19:761–767, 1984.Google Scholar
  13. 13.
    Hildebrand, T., and P. Rüegsegger. Quantification of bone microachitecture with the structure model index. CMBBE 1:15–23, 1997.Google Scholar
  14. 14.
    Hvid, I., K. Andersen, and S. Olesen. Cancellous bone strength measurements with the osteopenetrometer. Eng. Med. (Berlin) 13:73–78, 1984.Google Scholar
  15. 15.
    Hvid, I., S. M. Bentzen, F. Linde, L. Mosekilde, and B. Pongsoipetch. X-ray quantitative computed tomography: The relations to physical properties of proximal tibial trabecular bone specimens. J. Biomech. 22:837–844, 1989.Google Scholar
  16. 16.
    Kuo, A. D., and D. R. Carter. Computational methods for analysing the structure of cancellous bone in planar sections. J. Orthop. Res. 9:918–931, 1991.Google Scholar
  17. 17.
    Laib, A., and P. Rüegsegger. Comparison of structure extraction for in vivo trabecular bone measurements. Comput. Med. Imaging Graph. 23:69–74, 1999.Google Scholar
  18. 18.
    Laib, A., H. J. Hüuselmann, and P. Rüegsegger. In vivo high resolution 3D-QCT of the human forearm. Technol. Health Care 6:329–337, 1998.Google Scholar
  19. 19.
    Lotz, J. C., T. N. Gerhart, and W. C. Hayes. Mechanical properties of trabecular bone from the proximal femur: A 1072 PATTIJN et al. quantitative CT study. J. Comput. Assist. Tomogr. 14:107–114, 1990.Google Scholar
  20. 20.
    Majumdar, S. A. A review of magnetic resonance (MR) imaging of trabecular bone microarchitecture: Contribution to the prediction of biomechanical properties and fracture prevalence. Technol. Health Care 6:321–327, 1998.Google Scholar
  21. 21.
    Martens, M., R. Van Audekercke, P. Delport, P. De Meester, and J. C. Mulier. The mechanical characteristics of cancellous bone at the upper femoral region. J. Biomech. 16:971–983, 1983.Google Scholar
  22. 22.
    Martin, R. B. Determinants of the mechanical properties of bones. J. Biomech. 24:79–88, 1991.Google Scholar
  23. 23.
    Müller, R., and P. Ruegsegger. Analysis of mechanical properties of cancellous bone under conditions of simulated bone atrophy. J. Biomech. 29:1053–1060, 1996.Google Scholar
  24. 24.
    Müller, R., H. Van Campenhout, B. Van Damme, G. Van der Perre, J. Dequeker, T. Hildebrand, and P. Rüegsegger. Morphometric analysis of human bone biopsies: A quantitative structural comparison of histological sections and microcomputed tomography. Bone 23, 59–66, 1998.Google Scholar
  25. 25.
    Müller, R., M. Hahn, M. Vogel, G. Delling, and P. Ruegsegger. Morphometric analysis of noninvasively assessed bone biopsies: Comparison of high-resolution computed tomography and histologic sections. Bone 18, 215–220, 1996.Google Scholar
  26. 26.
    Oden, Z. M., D. M. Selvitelli, W. C. Hayes, and E. R. Meyers. The effect of trabecular structure on DXA-based predictions of bovine bone failure. Calcif. Tissue Int. 63:67–73, 1998.Google Scholar
  27. 27.
    Pattijn, V., I. Samson, J. Vander Sloten, R. Van Audekercke, B. Swaelens, and V. De Buck. Design of medical image based titanium membranes for bone reconstruction after tumour surgery. Proceedings of the Fifth Conference of the European Society for Engineering and Medicine, Barcelona, Spain, May 30-June 2, 1999, pp. 43–45.Google Scholar
  28. 28.
    Rho, J. Y., M. C. Hobatho, and R. B. Ashman. Relations of mechanical properties to density and CT numbers in human bone. Med. Eng. Phys. 17:347–355, 1995.Google Scholar
  29. 29.
    Rüegsegger, P., B. Koller, and R. Müller. A microtomographic system for the nondestructive evaluation of bone architecture. Calcif. Tissue Int. 58:24–29, 1996.Google Scholar
  30. 30.
    Schneider, E., P. Weber, B. Gasser, J. Cordey, G. Robotti, and S. M. Perren. Determination of geometrical and mechanical properties of the distal femur using computed tomography. Biomechanics X:1081–1087, 1987.Google Scholar
  31. 31.
    Sieva¨nen, H., P. Kannus, V. Nieminen, A. Heinonen, P. Oja, and I. Vuori. Estimation of various mechanical characteristics of human bones using dual energy x-ray absorptiometry: Methodology and precision. Bone 18:17S-27S, 1996.Google Scholar
  32. 32.
    Strømsøe, K., A. Høiseth, A. Alho, and W. L. Kok. Bending strength of the femur in relation to noninvasive bone mineral assessment. J. Biomech. 28:857–861, 1995.Google Scholar
  33. 33.
    Turner, C. H., S. C. Cowin, J. Y. Rho, R. B. Ashman, and J. C. Rice. The fabric dependence of the orthotropic elastic constants of cancellous bone. J. Biomech. 23:549–561, 1990.Google Scholar
  34. 34.
    Underwood, E. E. Quantitative Stereology. Reading, MA: Addison-Wesley, 1970, 274 pp.Google Scholar
  35. 35.
    Van der Perre, G., and G. Lowet. Physical meaning of bone mineral content parameters and their relation to mechanical properties. Clin. Rheuma. 13:33–37, 1994.Google Scholar
  36. 36.
    Van Rietbergen, B., H. Weinans, R. Huiskes, and A. Odgaard. A new method to determine trabecular bone elastic properties and loading using micromechanical finite-element models. J. Biomech. 28:69–81, 1995.PubMedGoogle Scholar
  37. 37.
    Whitehouse, W. J. The quantitative morphology of anisotropic trabecular bone. J. Microsc. 101:153–168, 1974.PubMedGoogle Scholar
  38. 38.
    Zysset, P. K., R. W. Goulet, and S. J. Hollister. A global relationship between trabecular bone morphology and homogenized elastic properties. J. Biomech. Eng. 120:640–646, 1998.Google Scholar

Copyright information

© Biomedical Engineering Society 2001

Authors and Affiliations

  • V. Pattijn
    • 1
  • T. Van Cleynenbreugel
    • 1
  • J. Vander Sloten
    • 1
  • R. Van Audekercke
    • 1
  • G. Van der Perre
    • 1
  • M. Wevers
    • 2
  1. 1.Division of Biomechanics and Engineering DesignK.U.LeuvenLeuvenBelgium
  2. 2.Department of Metallurgy and Materials EngineeringK.U.LeuvenLeuvenBelgium

Personalised recommendations