Annals of Biomedical Engineering

, Volume 26, Issue 6, pp 975–987 | Cite as

Finite Element Modeling of Three-Dimensional Pulsatile Flow in the Abdominal Aorta: Relevance to Atherosclerosis

  • Charles A. Taylor
  • Thomas J. R. Hughes
  • Christopher K. Zarins

Abstract

The infrarenal abdominal aorta is particularly prone to atherosclerotic plaque formation while the thoracic aorta is relatively resistant. Localized differences in hemodynamic conditions, including differences in velocity profiles, wall shear stress, and recirculation zones have been implicated in the differential localization of disease in the infrarenal aorta. A comprehensive computational framework was developed, utilizing a stabilized, time accurate, finite element method, to solve the equations governing blood flow in a model of a normal human abdominal aorta under simulated rest, pulsatile, flow conditions. Flow patterns and wall shear stress were computed. A recirculation zone was observed to form along the posterior wall of the infrarenal aorta. Low time-averaged wall shear stress and high shear stress temporal oscillations, as measured by an oscillatory shear index, were present in this location, along the posterior wall opposite the superior mesenteric artery and along the anterior wall between the superior and inferior mesenteric arteries. These regions were noted to coincide with a high probability-of-occurrence of sudanophilic lesions as reported by Cornhill et al. (Monogr. Atheroscler. 15:13--19, 1990). This numerical investigation provides detailed quantitative data on hemodynamic conditions in the abdominal aorta heretofore lacking in the study of the localization of atherosclerotic disease. © 1998 Biomedical Engineering Society.

PAC98: 8745Hw, 0270Dh, 8710+e

Hemodynamics Plaque localization Computational methods Parallel computing Shear stress Finite element Three-dimensional pulsatile flow Abdominal aorta Atherosclerosis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Bogren, H. G., and M. H. Buonocore. Blood flow measurements in the aorta and major arteries with MR velocity mapping. J. Magn. Reson. Imaging4:119-130, 1994.Google Scholar
  2. 2.
    Brooks, A. N., and T. J. R. Hughes. Streamline upwind Petrov-Galerkin formulation for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng.32:199-259, 1981.Google Scholar
  3. 3.
    Caro, C. G., D. J. Doorly, M. Tarnawski, K. T. Scott, Q. Long, and C. L. Dumoulin. Non-planar curvature and branching of arteries and non-planar type flow. Proc. R. Soc. London, Ser. B452:185-197, 1996.Google Scholar
  4. 4.
    Cornhill, J. F., E. E. Herderick, and H. C. Stary. Topography of human aortic sudanophilic lesions. Monogr. Atheroscler.15:13-19, 1990Google Scholar
  5. 5.
    Duncan, D. D., C. B. Bargeron, S. E. Borchardt, O. J. Deters, S. A. Gearhart, F. F. Mark, and M. H. Friedman. The effect of compliance on wall shear in casts of a human aortic bifurcation. J. Biomech. Eng.112:183-188, 1990.Google Scholar
  6. 6.
    Glagov, S., D. A. Rowley, and R. I. Kohut. Atherosclerosis of human aorta and its coronary and renal arteries. Arch. Pathol.72:82-95, 1961.Google Scholar
  7. 7.
    Friedman, M. H., G. M. Hutchins, and C. B. Bargeron. Correlation between intimal thickness and fluid shear in human arteries. Atherosclerosis (Berlin)39:425-436, 1981.Google Scholar
  8. 8.
    He, X., and D. N. Ku. Pulsatile flow in the human left coronary artery bifurcation: Average conditions. J. Biomech. Eng.118:74-82, 1996.Google Scholar
  9. 9.
    Holenstein, R., and D. N. Ku. Reverse flow in the major infrarenal vessels: A capacitive phenomenon. Biorheology25:835-842, 1988.Google Scholar
  10. 10.
    Hughes, T. J. R., W. K. Liu, and T. K. Zimmermann. Lagrangian-Eulerian finite element formulation for incompressible viscous flows. Comput. Methods Appl. Mech. Eng.29:329-349, 1981.Google Scholar
  11. 11.
    Hughes, T. J. R., L. P. Franca, and M. Balestra. A new finite element method for computational fluid dynamics: V. Circumventing the Babuska-Brezzi condition: A stable Petrov- Galerkin formulation of the Stokes problem accommodating equal order interpolations. Comput. Methods Appl. Mech. Eng.59:85-99, 1986.Google Scholar
  12. 12.
    Hughes, T. J. R., L. P. Franca, and G. M. Hulbert. A new finite element method for computational fluid dynamics: VIII. The Galerkin/least squares method for advective-diffusive equations. Comput. Methods Appl. Mech. Eng.73:173-189, 1989.Google Scholar
  13. 13.
    Johan, Z., T. J. R. Hughes, and F. Shakib. A globally convergent matrix-free algorithm for implicit time-marching schemes arising in finite element analysis in fluids. Comput. Methods Appl. Mech. Eng.87:281-304, 1991.Google Scholar
  14. 14.
    Karypis, G., and V. Kumar. A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. (to appear).Google Scholar
  15. 15.
    Ku, D. N., D. P. Giddens, C. K. Zarins, and S. Glagov. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis (Dallas)5:293-302, 1985.Google Scholar
  16. 16.
    Ku, D. N., S. Glagov, J. E. Moore, and C. K. Zarins. Flow patterns in the abdominal aorta under simulated postprandial and exercise conditions: an experimental study. J. Vasc. Surg.9:309-316, 1989.Google Scholar
  17. 17.
    Kunov, M. J., D. A. Steinman, and C. R. Ethier. Particle volumetric residence time calculations in arterial geometries. J. Biomech. Eng.118:158-164, 1996.Google Scholar
  18. 18.
    Lei, M., C. Kleinstreuer, and G. A. Truskey. Numerical investigations and prediction of atherogenic sites in branching arteries. J. Biomech. Eng.117:350-357, 1995.Google Scholar
  19. 19.
    Lei, M., J. P. Archie, and C. Kleinstreuer. Computational design of a bypass graft that minimizes wall shear stress gradients in the region of the distal anastomosis. J. Vasc. Surg.25:637-646, 1997.Google Scholar
  20. 20.
    Loth, F. Velocity and Wall Shear Stress Measurements inside a Vascular Graft Model under Steady and Pulsatile Flow Conditions. Atlanta, GA: Georgia Institute of Technology, PhD Dissertation, 1993.Google Scholar
  21. 21.
    Maier, S. E., D. Meier, P. Boesiger, U. T. Moser, and A. Vieli. Human abdominal aorta: Comparative measurements of blood flow with MR imaging and multigated Doppler US. Radiology171:487-492, 1989.Google Scholar
  22. 22.
    Moore, J. E., D. N. Ku, C. K. Zarins, and S. Glagov. Pulsatile flow visualization in the abdominal aorta under differing physiologic conditions: Implications for increased susceptibility to atherosclerosis. J. Biomech. Eng.114:391-397, 1992.Google Scholar
  23. 23.
    Moore, J. E., and D. N. Ku. Pulsatile velocity measurements in a model of the human abdominal aorta under resting conditions. J. Biomech. Eng.116:337-346, 1994.Google Scholar
  24. 24.
    Moore, J. E., and D. N. Ku. Pulsatile velocity measurements in a model of the human abdominal aorta under simulated exercise and postprandial conditions. J. Biomech. Eng.116:107-111, 1994.Google Scholar
  25. 25.
    Moore, J. E., S. E. Maier, D. N. Ku, and P. Boesiger. Hemodynamics in the abdominal aorta: A comparison of in vitroand in vivomeasurements. J. Appl. Physiol.76:1520- 1527, 1994.Google Scholar
  26. 26.
    Moore, J. E., C. Xu, S. Glagov, C. K. Zarins, and D. N. Ku. Fluid wall shear stress measurements in a model of the human abdominal aorta: Oscillatory behavior and relationship to atherosclerosis. Atherosclerosis (Berlin)110:225-240, 1994.Google Scholar
  27. 27.
    Mostbeck, G. H., M. C. Dulce, G. R. Caputo, E. Proctor, and C. B. Higgins. Flow pattern analysis in the abdominal aorta with velocity-encoded cine MR imaging. J. Magn. Reson. Imaging3:617-623, 1993.Google Scholar
  28. 28.
    Pedersen, E. M., H. W. Sung, A. C. Burlson, and A. P. Yoganathan. Two-dimensional velocity measurements in a pulsatile flow model of the normal abdominal aorta simulating different hemodynamic conditions. J. Biomech.26:1237- 1247, 1993.Google Scholar
  29. 29.
    Pelc, N. J., F. G. Sommer, K. C. P. Li, T. J. Brosnan, R. J. Herfkens, and D. R. Enzmann. Quantitative magnetic resonance flow imaging. Magn. Reson. Q.10:125-147, 1994.Google Scholar
  30. 30.
    Perktold, K., M. Resch, and R. Peter. Three-dimensional numerical analysis of pulsatile flow and wall shear stress in the carotid artery bifurcation. J. Biomech.24:409-420, 1991.Google Scholar
  31. 31.
    Perktold, K., R. O. Peter, M. Resch, and G. Langs. Pulsatile non-Newtonian flow in three-dimensional carotid bifurcation models: A numerical study of flow phenomena under different bifurcation angles. J. Biomed. Eng.13:507-515, 1991.Google Scholar
  32. 32.
    Perktold, K., and G. Rappitsch. Computer simulation of local blood flow and vessel mechanics in a compliant carotid artery bifurcation model. J. Biomech.28:845-856, 1995.Google Scholar
  33. 33.
    Rappitsch, G., and K. Perktold. Pulsatile albumin transport in large arteries: A numerical simulation study. J. Biomech. Eng.118:511-518, 1996.Google Scholar
  34. 34.
    Roberts, J. C., C. Moses, and R. H. Wilkins. Autopsy studies in atherosclerosis: I. Distribution and severity of atherosclerosis in patients dying without morphologic evidence of atherosclerotic catastrophe. Circulation20:511-519, 1959.Google Scholar
  35. 35.
    Saad, Y., and M. H. Shultz. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM (Soc. Ind. Appl. Math.) J. Sci. Stat. Comput.7:856- 869, 1986.Google Scholar
  36. 36.
    Shephard, M. S., and M. K. Georges. Automatic threedimensional mesh generation by the finite octree technique. Int. J. Numer. Methods Eng.32:709-749, 1991.Google Scholar
  37. 37.
    Steinman, D. A., and C. R. Ethier. The effect of wall distensibility on flow in a two-dimensional end-to-side anastomosis. J. Biomech. Eng.116:294-301, 1994.Google Scholar
  38. 38.
    Taylor, C. A., B. I. Tropea, T. J. R. Hughes, and C. K. Zarins. Effect of graded exercise on aortic wall shear stress. Surg. ForumXLVI:331-334, 1995.Google Scholar
  39. 39.
    Taylor, C. A., T. J. R. Hughes, and C. K. Zarins. Computational investigations in vascular disease. Comput. Phys.10:224-232, 1996.Google Scholar
  40. 40.
    Taylor, C. A., T. J. R. Hughes, and C. K. Zarins. Finite element modeling of blood flow in arteries. Comput. Methods Appl. Mech. Eng.158:155-196, 1998.Google Scholar
  41. 41.
    Womersley, J. R., Method for the calculation of velocity, rate of flow, and viscous drag in arteries when the pressure gradient is known. J. Physiol. (London)127:553-63, 1955.Google Scholar
  42. 42.
    Zarins, C. K., D. P. Giddens, B. K. Bharadvaj, V. S. Sottiurai, R. F. Mabon, and S. Glagov. Carotid bifurcation atherosclerosis: Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress. Circ. Res.53:502-514, 1983.Google Scholar
  43. 43.
    SHAPES™ Reference Manual, XOX, Inc., 1994.Google Scholar
  44. 44.
    Adaptive Modeling Language™ Theory Manual, Technosoft, Inc., 1995.Google Scholar
  45. 45.
    Spectrum™ Theory Manual, Centric Engineering Systems, Inc., 1994.Google Scholar
  46. 46.
    Spectrum™ Visualizer Reference Manual, Centric Engineering Systems, Inc., 1994.Google Scholar

Copyright information

© Biomedical Engineering Society 1998

Authors and Affiliations

  • Charles A. Taylor
    • 1
    • 2
  • Thomas J. R. Hughes
    • 2
  • Christopher K. Zarins
    • 1
  1. 1.Department of SurgeryStanford UniversityStanford
  2. 2.Department of Mechanical EngineeringStanford UniversityStanford

Personalised recommendations