Advertisement

Annals of Biomedical Engineering

, Volume 29, Issue 5, pp 414–426 | Cite as

Mechanoelectric Feedback in a Model of the Passively Inflated Left Ventricle

  • Frederick J. Vetter
  • Andrew D. McCulloch
Article

Abstract

Mechanoelectric feedback has been described in isolated cells and intact ventricular myocardium, but the mechanical stimulus that governs mechanosensitive channel activity in intact tissue is unknown. To study the interaction of myocardial mechanics and electrophysiology in multiple dimensions, we used a finite element model of the rabbit ventricles to simulate electrical propagation through passively loaded myocardium. Electrical propagation was simulated using the collocation-Galerkin finite element method. A stretch-dependent current was added in parallel to the ionic currents in the Beeler–Reuter ventricular action potential model. We investigated different mechanical coupling parameters to simulate stretch-dependent conductance modulated by either fiber strain, cross-fiber strain, or a combination of the two. In response to pressure loading, the conductance model governed by fiber strain alone reproduced the epicardial decrease in action potential amplitude as observed in experimental preparations of the passively loaded rabbit heart. The model governed by only cross-fiber strain reproduced the transmural gradient in action potential amplitude as observed in working canine heart experiments, but failed to predict a sufficient decrease in amplitude at the epicardium. Only the model governed by both fiber and cross-fiber strain reproduced the epicardial and transmural changes in action potential amplitude similar to experimental observations. In addition, dispersion of action potential duration nearly doubled with the same model. These results suggest that changes in action potential characteristics may be due not only to length changes along the long axis direction of the myofiber, but also due to deformation in the plane transverse to the fiber axis. The model provides a framework for investigating how cellular biophysics affect the function of the intact ventricles. © 2001 Biomedical Engineering Society.

PAC01: 8716Uv, 8719Nn, 8719Hh, 8719Rr, 8718Bb, 8710+e, 0270Dh, 8717Aa

Action potential morphology Cardiac mechanics Mechanosensitive channel Stretch-dependent current Excitation–contraction coupling Numerical model study 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Antzelevitch, C., Z.-Q. Sun, Z.-Q. Zhang, and G.-X. Yan. Cellular and ionic mechanisms underlying erythromycin-induced long QT intervals and torsade de pointes. J. Am. Coll. Cardiol. 28(7):1836–1848, 1996.Google Scholar
  2. 2.
    Beaumont, J., N. Davidenko, J. Davidenko, and J. Jalife. Self-sustaining spiral wave activity in a two-dimensional ionic model of cardiac ventricular muscle. In: Computer Simulations in Biomedicine. Boston, MA: Computational Mechanics, 1995, pp. 75–85.Google Scholar
  3. 3.
    Beeler, G. W., and H. Reuter. Reconstruction of the action potential of ventricular myocardial fibers. J. Physiol. (London) 268(1):177–210, 1977.Google Scholar
  4. 4.
    Berrier, C., A. Coulombe, C. Houssin, and A. Ghazi. A patch-clamp study of ion channels of inner and outer membranes and of contact zones of E. coli, fused into giant liposomes: Pressure-activated channels are localized in the inner membrane. FEBS Lett. 259(1):27–32, 1989.Google Scholar
  5. 5.
    Bett, G. C. L., and F. Sachs. Cardiac mechanosensitivity and stretch-activated ion channels. Trends Cardiovasc. Med. 7(1):4–8, 1997.Google Scholar
  6. 6.
    Bett, G. C. L., and F. Sachs. Whole-cell mechanosensitive currents in rat ventricular myocytes activated by direct stimulation. J. Membr. Biol. 173(3):255–263, 2000.Google Scholar
  7. 7.
    Bowman, C. L., and J. W. Lohr. Curvature-sensitive mecha-nosensitive ion channels and osmotically evoked movements of the patch membrane (abstract). Biophys. J. 70(2):A365, 1996. Abstract Supplement for the Biophysical Society 40th Annual Meeting, 17–21 February 1996, Baltimore, Mary-land.Google Scholar
  8. 8.
    Calaghan, S. C., and E. White. The role of calcium in the response of cardiac muscle to stretch. Prog. Biophys. Mol. Biol. 71:59–90, 1999.Google Scholar
  9. 9.
    Cates, A. W., and A. E. Pollard. A model study of intramural dispersion of action potential duration in the canine pulmonary conus. Ann. Biomed. Eng. 26(4):567–576, 1998.Google Scholar
  10. 10.
    Costa, K. D., K. May-Newman, D. Farr, W. G. O'Dell, A. D. McCulloch, and J. H. Omens. Three-dimensional residual strain in midanterior canine left ventricle. Am. J. Physiol. 273:H1968-H1976, 1997.Google Scholar
  11. 11.
    Craelius, W. Stretch-activation of rat cardiac myocytes. Exp. Physiol. 78(3):411–423, 1993.Google Scholar
  12. 12.
    Delcour, A. H., B. Martinac, J. Adler, and C. Kung. Voltage-sensitive ion channel of Escherichia coli. J. Membr. Biol. 112(3):267–275, 1989.Google Scholar
  13. 13.
    Fedida, D., and W. R. Giles. Regional variations in action potentials and transient outward current in myocytes isolated from rabbit left ventricle. J. Physiol. (London) 442:191–209, 1991.Google Scholar
  14. 14.
    Franz, M. R. Current status of monophasic action potential recording: Theories, measurements, and interpretations. Cardiovasc. Res. 41:25–40, 1999.Google Scholar
  15. 15.
    Franz, M. R., R. Cima, D. Wang, D. Profitt, and R. Kurz. Electrophysiological effects of myocardial stretch and me-chanical determinants of stretch-activated arrhythmias. Circulation 86(3):968–978, 1992; ibid. 86(5):1663, 1992.Google Scholar
  16. 16.
    Fung, Y.-C. Biodynamics: Circulation. New York City: Springer, 1984.Google Scholar
  17. 17.
    Gallagher, A. M., J. H. Omens, L. L. Chu, and J. W. Covell. Alterations in collagen fibrillar structure and mechanical properties of the healing scar following myocardial infarction. Cardiovasc. Pathobiol. 2(1):25–36, 1997.Google Scholar
  18. 18.
    Gerdes, A. M., S. E. Kellerman, K. B. Malec, and D. D. Schocken. Transverse shape characteristics of cardiac myo-cytes from rats and humans. Cardioscience 5(1):31–36, 1994; ibid. 5(2):63, 1994.Google Scholar
  19. 19.
    Hamill, O. P., and D. W. McBride, Jr. Rapid adaptation of single mechanosensitive channels in Xenopus oocytes. Proc. Natl. Acad. Sci. U.S.A. 89(16):7462–7466, 1992.Google Scholar
  20. 20.
    Hansen, D. E., M. Borganelli, G. P. Stacy, Jr., and L. K. Taylor. Dose-dependent inhibition of stretch-induced arrhythmias by gadolinium in isolated canine ventricles. Evidence for a unique mode of antiarrhythmic action. Circ. Res. 69(3):820–831, 1991.Google Scholar
  21. 21.
    Hindmarsh, A. C. ODEPACK, a systematized collection of ODE solvers. In: Scientific Computing: Applications of Mathematics and Computing to the Physical Sciences, IMACS Transactions on Scientific Computation, edited by R. S. Stepleman. New York City: North-Holland, 1983, Vol. 1, pp. 55–64; available from http://www.netlib.org/odepackGoogle Scholar
  22. 22.
    Hu, H., and F. Sachs. Mechanically activated currents in chick heart cells. J. Membr. Biol. 154(3):205–216, 1996.Google Scholar
  23. 23.
    Joyner, R. W. Effects of the discrete pattern of electrical coupling on propagation through an electrical syncytium. Circ. Res. 50(2):192–200, 1982.Google Scholar
  24. 24.
    Kim, D. Novel cation-selective mechanosensitive ion channel in the atrial cell membrane. Circ. Res. 72(1):225–231, 1993.Google Scholar
  25. 25.
    Knisley, S. B., and B. C. Hill. Effects of bipolar point and line stimulation in anisotropic rabbit epicardium: Assessment of the critical radius of curvature for longitudinal block. IEEE Trans. Biomed. Eng. 42(10):957–966, 1995.Google Scholar
  26. 26.
    Lekven, J., K. Chatterjee, J. V. Tyberg, and W. W. Parmley. Reduction in ventricular endocardial and epicardial potentials during acute increments in left ventricular dimensions. Am. Heart J. 98(2):200–206, 1979.Google Scholar
  27. 27.
    Luo, C.-H., and Y. Rudy. A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic currents and concentration changes. Circ. Res. 74(6):1071–1096, 1994.Google Scholar
  28. 28.
    Martinac, B., J. Adler, and C. Kung. Mechanosensitive ion channels of E. coli, activated by amphipaths. Nature (London) 348(6298):261–263, 1990.Google Scholar
  29. 29.
    Omens, J. H., and Y. C. Fung. Residual strain in rat left ventricle. Circ. Res. 66(1):37–45, 1990.Google Scholar
  30. 30.
    Omens, J. H., K. D. May, and A. D. McCulloch. Transmural distribution of three-dimensional strain in the isolated ar-rested canine left ventricle. Am. J. Physiol. 261:H918-H928, 1991.Google Scholar
  31. 31.
    Pollard, A. E., N. Hooke, and C. S. Henriquez. Cardiac propagation simulation. Crit. Rev. Biomed. Eng. 20(3–4):171–210, 1992.Google Scholar
  32. 32.
    Reiter, M. J. Contraction-excitation feedback. In: Cardiac Electrophysiology: From Cell to Bedside, 3rd ed. Philadelphia, PA: Saunders, 2000, Chap. 28, pp. 249–255.Google Scholar
  33. 33.
    Rice, J. J., R. L. Winslow, J. Dekanski, and E. McVeigh. Model studies of the role of mechano-sensitive currents in the generation of cardiac arrhythmias. J. Theor. Biol. 190(4):295–312, 1998.Google Scholar
  34. 34.
    Riemer, T. L., E. A. Sobie, and L. Tung. Stretch-induced changes in arrhythmogensis and excitability in experimentally based heart cell models. Am. J. Physiol. 275:H431-H442, 1998.Google Scholar
  35. 35.
    Rodriguez, E. K., J. H. Omens, L. K. Waldman, and A. D. McCulloch. Effect of residual stress on transmural sarcomere length distributions in rat left ventricle. Am. J. Physiol. 264:H1048-H1056, 1993.Google Scholar
  36. 36.
    Rogers, J. M., M. S. Courtemenche, and A. D. McCulloch. Finite element methods for modeling impulse propagation in the heart. In: Computational Biology of the Heart, edited by A. V. Panfilov and A. V. Holden. West Sussex, England: Wiley, 1997, Chap. 7, pp. 217–234.Google Scholar
  37. 37.
    Rogers, J. M., and A. D. McCulloch. A collocation-Galerkin finite element model of cardiac action potential propagation. IEEE Trans. Biomed. Eng. 41(8):743–757, 1994.Google Scholar
  38. 38.
    Ruknudin, A., F. Sachs, and J. O. Bustamante. Stretch-activated ion channels in tissue-cultured chick heart. Am. J. Physiol. 264:H960-H972, 1993.Google Scholar
  39. 39.
    Ruknudin, A., M. J. Song, and F. Sachs. The ultrastructure of patch-clamped membranes: A study using high-voltage electron microscopy. J. Cell Biol. 112(1):125–134, 1991.Google Scholar
  40. 40.
    Sachs, F. Modeling mechanical-electrical transduction in the heart. In: Cell Mechanics and Cellular Engineering, edited by V. C. Mow, F. Guilak, R. M. Hochmuth, and R. Tran-Son-Tay. New York City: Springer, 1994, Chap. 18, pp. 308–328.Google Scholar
  41. 41.
    Sigurdson, W., A. Ruknudin, and F. Sachs. Calcium imaging of mechanically induced fluxes in tissue-cultured chick heart: Role of stretch-activated ion channels. Am. J. Physiol. 262:H1110-H1115, 1992.Google Scholar
  42. 42.
    Taggart, P., and P. M. I. Sutton. Cardiac mechanoelectric feedback in man: Clinical relevance. Prog. Biophys. Mol. Biol. 71:139–154, 1999.Google Scholar
  43. 43.
    Van Leuven, S. L., L. K. Waldman, A. D. McCulloch, and J. W. Covell. Gradients of epicardial strain across the perfusion boundary during acute myocardial ischemia. Am. J. Physiol. 267:H2348-H2362, 1994.Google Scholar
  44. 44.
    Vetter, F. J., and A. D. McCulloch. Three-dimensional analysis of regional cardiac function: A model of rabbit ventricular anatomy. Prog. Biophys. Mol. Biol. 69(2/3):157–183, 1998.Google Scholar
  45. 45.
    Vetter, F. J., and A. D. McCulloch. Three-dimensional stress and strain in passive rabbit left ventricle: A model study. Ann. Biomed. Eng. 28(7):781–792, 2000.Google Scholar
  46. 46.
    Vetter, F. J., J. M. Rogers, and A. D. McCulloch. A finite element model of passive mechanics and electrical propagation in the rabbit ventricles. In: Computers in Cardiology 1998. New York City: Institute of Electrical and Electronics Engineers, 1998, Vol. 25, pp. 705–708.Google Scholar
  47. 47.
    Waldman, L. K. Multidimensional measurement of regional strains in the intact heart. In: Theory of Heart: Biomechanics, Biophysics, and Nonlinear Dynamics of Cardiac Function, edited by L. Glass, P. Hunter, and A. McCulloch. New York City: Springer, 1991, Chap. 7, pp. 145–174.Google Scholar
  48. 48.
    Yan, G.-X., W. Shimizu and C. Antzelevitch. Characteristics and distribution of M cells in arterially perfused canine left ventricular wedge preparations. Circulation 98(18):1921–1927, 1998.Google Scholar
  49. 49.
    Yang, X. C., and F. Sachs. Mechanically sensitive, nonselective cation channels. Exs 66:79–92, 1993.Google Scholar
  50. 50.
    Zabel, M., B. S. Koller, F. Sachs, and M. R. Franz. Stretch-induced voltage changes in the isolated beating heart: Importance of the timing of stretch and implications for stretch-activated ion channels. Cardiovasc. Res. 32(1):120–130, 1996.Google Scholar
  51. 51.
    Zabel, M., S. Portnoy, and M. R. Franz. Effect of sustained load on dispersion of ventricular repolarization and conduction time in the isolated intact rabbit heart. J. Cardiovasc. Electrophysiol. 7(1):9–16, 1996.Google Scholar

Copyright information

© Biomedical Engineering Society 2001

Authors and Affiliations

  • Frederick J. Vetter
    • 1
  • Andrew D. McCulloch
    • 1
  1. 1.Department of BioengineeringUniversity of California, San DiegoSan Diego

Personalised recommendations