Annals of Biomedical Engineering

, Volume 29, Issue 3, pp 252–262 | Cite as

Lung Area–Volume Models in Relation to the Recruitment–Derecruitment of Individual Lung Units

  • L. Brancazio
  • G. N. Franz
  • E. L. Petsonk
  • D. G. Frazer
Article

Abstract

The objective of this study was to reconsider some of the previous experimental results in terms of simple geometric models in order to determine if any of the apparent conflicts could be explained within a more unified concept. These models allow individual lung units and the entire lung to expand differently with regard to their area–volume relationship. The effect of a recruitment–derecruitment process as the lung inflates–deflates is also considered. Examples are used to illustrate how some of the apparent conflicts found in the literature may arise from whether or not recruitment and derecruitment take place during lung expansion and contraction. © 2001 Biomedical Engineering Society.

PAC01: 8719Uv, 8710+e

Geometric irreversibility of the lung Lung area–volume models Lung units Lung expansion Lung mechanics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Aherne, W. Methods of counting discrete issue components in microscopical sections. J. R. Microsc. Soc. 87:493, 1967.Google Scholar
  2. 2.
    Akahori, T., S. Suzuki, M. Suzuki, and T. Okubo. Dynamic behavior of alveolar surface-to-volume ratio on live dogs by light-scattering stereology. J. Appl. Physiol. 75:1624–1629, 1993.Google Scholar
  3. 3.
    Ardila, R., T. Horie, and J. Hildebrandt. Microscopic isotropy of lung expansion. Respir. Physiol. 20:105–115, 1979.Google Scholar
  4. 4.
    Bachofen, H., and J. Hildebrandt. Area analysis of pressure– volume hysteresis in mammalian lungs. J. Appl. Physiol. 30:493–497, 1971.Google Scholar
  5. 5.
    Bachofen, H., S. Schürch, M. Urbinelli, and E. R. Weibel. Relations among alveolar surface tension, surface area, volume, and recoil pressure. J. Appl. Physiol. 62:1878–1887, 1987.Google Scholar
  6. 6.
    Boyles, III, J., E. S. Engelstein, and L. I. Sinoway. Mean air space diameter, lung surface area, and alveolar surface tension. Respiration 34:241–249, 1977.Google Scholar
  7. 7.
    Daly, B. D., G. E. Parks, C. H. Edmonds, C. W. Hibbs, and J. C. Normal. Dynamic alveolar mechanics as studied by video microscopy. Respir. Physiol. 24:217–323, 1976.Google Scholar
  8. 8.
    D'Angelo, E. Local alveolar size and transpulmonary pressure in situ and in isolated lungs. Respir. Physiol. 14:251–266, 1972.Google Scholar
  9. 9.
    Dunnil, M. S. Effects of lung inflation on alveolar surface area in the dog. Nature (London) 214:1013–1014, 1967.Google Scholar
  10. 10.
    Faridy, E. E., and S. Permut. Surface forces and airway obstruction. J. Appl. Physiol. 30:319–321, 1971.Google Scholar
  11. 11.
    Flicker, E., and J. Lee. Equilibrium of force on subpleural alveoli: Implication to lung mechanics. J. Appl. Physiol. 36:366–374, 1974.Google Scholar
  12. 12.
    Forrest, J. B. The effect of changes in lung volume on the size and shape of alveoli. J. Physiol. (London) 210:533–547, 1970.Google Scholar
  13. 13.
    Frazer, D. G., and K. C. Weber. Trapped air in ventilated excised rats lungs. J. Appl. Physiol. 40:915–922, 1976.Google Scholar
  14. 14.
    Frazer, D. G., P. W. Stengel, and K. C. Weber. Meniscus formation in airways of excised rat lungs. Respir. Physiol. 36:121–129, 1979.Google Scholar
  15. 15.
    Frazer, D. G., and G. N. Franz. Trapped gas and lung hysteresis. Respir. Physiol. 46:237–246, 1981.Google Scholar
  16. 16.
    Frazer, D. G., L. D. Smith, L. R. Brancazio, and K. C. Weber. Comparison of lung sounds and gas trapping in the study of airway mechanics. Environ. Health Perspect. 66:25–30, 1986.Google Scholar
  17. 17.
    Frazer, D. G., K. C. Weber, and G. N. Franz. Evidence of sequential opening and closing of lung units during inflation–deflation of excised rat lungs. Respir. Physiol. 61:277–288, 1985.Google Scholar
  18. 18.
    Gil, J., and E. R. Weibel. Morphological study of pressure– volume hysteresis in lungs fixed by vascular perfusion. Respir. Physiol. 15:190–213, 1972.Google Scholar
  19. 19.
    Gil, J., H. Bachofen, P. Gehr, and E. R. Weibel. Alveolar volume–surface area relationship in air-and saline-filled lungs fixed by vascular perfusion. J. Appl. Physiol.: Respir., Environ. Exercise Physiol. 47:990–1001, 1979.Google Scholar
  20. 20.
    Hills, B. A. Geometric irreversibility and compliance hysteresis in the lung. Respir. Physiol. 13:50–61, 1971.Google Scholar
  21. 21.
    Klingele, T. G., and N. C. Staub. Alveolar shape change with volume in isolated, air-filled lobes of cat lung. J. Appl. Physiol. 28:411–419, 1970.Google Scholar
  22. 22.
    Kuno, K., and N. C. Staub. Acute mechanical effects of lung volume changes on artificial microholes in alveolar walls. J. Appl. Physiol. 24:83–92, 1968.Google Scholar
  23. 23.
    Lum, H., and W. Mitzner. A species comparison of alveolar size and surface forces. J. Appl. Physiol. 62:1865–1871, 1987.Google Scholar
  24. 24.
    Macklem, P. T. Respiratory mechanics. Annu. Rev. Physiol. 40:157–184, 1978.Google Scholar
  25. 25.
    Mercer, R. R., J. M. Laco, and J. D. Crapo. Threedimensional reconstructon of alveoli in the rat lung for pressure–volume relationships. J. Appl. Physiol. 62:1480–1487, 1987.Google Scholar
  26. 26.
    Nieman, G. F. Mechanisms of lung expansion: A review. Resp. Care 28:426–433, 1983.Google Scholar
  27. 27.
    Smaldone, G. C., W. Mitzner, and H. Itoh. Role of alveolar recruitment in lung inflation: Influence on pressure–volume hysteresis. J. Appl. Physiol.: Respir., Environ. Exercise Physiol. 55:1321–1332, 1983.Google Scholar
  28. 28.
    Smith, L. D., D. G. Frazer, and W. L. Cooley. The spectral analysis of tracheal lung sounds in ventilated excised rat lungs. In: 27th Midwest Symposium on Circuits and Systems, edited by R. E. Swartwout. 1984, Vol. 1, p. 13–16.Google Scholar
  29. 29.
    Suzuki, S., J. P. Butler, E. H. Oldmixon, and F. G. Hoppin, Jr. Light scattering by lung correlates with stereological measurements. J. Appl. Physiol. 58:97–104, 1985.Google Scholar
  30. 30.
    Weibel, E. R. Morphometry of the Human Lung. New York: Academic, 1963.Google Scholar
  31. 31.
    Weibel, E. R. Stereological Methods. London: Academic, 1980, Vol. 2.Google Scholar
  32. 32.
    Weibel, E. R., and D. M. Gomez. A principle for counting tissue random sections. J. Appl. Physiol. 17:343–348, 1962.Google Scholar

Copyright information

© Biomedical Engineering Society 2001

Authors and Affiliations

  • L. Brancazio
    • 1
  • G. N. Franz
    • 2
  • E. L. Petsonk
    • 3
  • D. G. Frazer
    • 4
    • 2
  1. 1.Department of Obstetrics and GynecologyWest Virginia University School of MedicineMorgantown
  2. 2.Department of PhysiologyWest Virginia University School of MedicineMorgantown
  3. 3.Division of Respiratory DiseasesNational Institute for Occupational Safety and HealthMorgantown
  4. 4.Health Effects Laboratory DivisionNational Institute for Occupational Safety and HealthMorgantown

Personalised recommendations