Annals of Biomedical Engineering

, Volume 28, Issue 11, pp 1281–1299

Numerical Simulation and Experimental Validation of Blood Flow in Arteries with Structured-Tree Outflow Conditions

  • Mette S. Olufsen
  • Charles S. Peskin
  • Won Yong Kim
  • Erik M. Pedersen
  • Ali Nadim
  • Jesper Larsen
Article

Abstract

Blood flow in the large systemic arteries is modeled using one-dimensional equations derived from the axisymmetric Navier–Stokes equations for flow in compliant and tapering vessels. The arterial tree is truncated after the first few generations of large arteries with the remaining small arteries and arterioles providing outflow boundary conditions for the large arteries. By modeling the small arteries and arterioles as a structured tree, a semi-analytical approach based on a linearized version of the governing equations can be used to derive an expression for the root impedance of the structured tree in the frequency domain. In the time domain, this provides the proper outflow boundary condition. The structured tree is a binary asymmetric tree in which the radii of the daughter vessels are scaled linearly with the radius of the parent vessel. Blood flow and pressure in the large vessels are computed as functions of time and axial distance within each of the arteries. Comparison between the simulations and magnetic resonance measurements in the ascending aorta and nine peripheral locations in one individual shows excellent agreement between the two. © 2000 Biomedical Engineering Society.

PAC00: 8719Uv

Arterial blood flow Arterial modeling Blood flow modeling Arterial outflow conditions Biofluid dynamics Mathematical modeling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Anliker, M., R. L. Rockwell, and E. Ogden. Nonlinear analy-sis of flow pulses and shock waves in arteries. Z. Angew. Math. Phys. 22:217-246, 1971.Google Scholar
  2. 2.
    Atabek, H. B. Wave propagation through a viscous fluid contained in a tethered, initially stressed, orthotropic elastic tube. Biophys. J. 8:626-649, 1968.Google Scholar
  3. 3.
    Avolio, A. Aging and wave reflection. J. Hypertens. 10:S83-S86, 1992.Google Scholar
  4. 4.
    Barnard, A. C. L., W. A. Hunt, W. P. Timlake, and E. Varley. A theory of fluid flow in compliant tubes. Biophys. J. 6:717-724, 1966.Google Scholar
  5. 5.
    Bassingthwaighte, J. B., L. S. Liebovitch, and B. J. West. Fractal Physiology. The American Physiological Society Methods in Physiology Series. New York: Oxford University Press, 1994, pp. 236-262.Google Scholar
  6. 6.
    Caro, C. G., T. J. Pedley, R. C. Schroter, and W. A. Seed. The Mechanics of the Circulation. Oxford: Oxford University Press, 1978, pp. 151-433.Google Scholar
  7. 7.
    Chorin, A. J., and J. E. Marsden. A Mathematical Introduc-tion to Fluid Mechanics. 3rd ed. New York: Springer 1998, pp. 1-46.Google Scholar
  8. 8.
    Courant, R., K. Friedrichs, and H. Lewy. U ¨ ber die partiellen differenzengleichungen de mathematischen physic. Math. Ann. 100:32-74, 1928.Google Scholar
  9. 9.
    Feinberg, A. W., and H. Lax. Studies of the arterial pulse wave. Circulation 18:1125-1130, 1958.Google Scholar
  10. 10.
    Guyton, A. C. Textbook of Medical Physiology, 9th ed. Phila-delphia: W. B. Saunders Company, 1996, pp. 161-294.Google Scholar
  11. 11.
    Iberall, A. S.. Anatomy and steady flow characteristics of the arterial system with an introduction to its pulsatile character-istics. Math. Biosci. 1:375-385, 1967.Google Scholar
  12. 12.
    Janna, W. S. Introduction to Fluid Mechanics, 3rd ed. Bos-ton: PWS-Kent, 1993.Google Scholar
  13. 13.
    Kannel, W. B., P. A. Wolf, D. L. McGee, T. R. Dawber, P. McNamara, and W. P. Castelli. Systolic blood pressure, ar-terial rigidity, and risk of stroke. J. Am. Med. Assoc. 245:1225-1229, 1981.Google Scholar
  14. 14.
    Kassab, G. S., C. A. Rider, N. J. Tang, and Y. C. Fung. Morphometry of Pig Coronary Arterial Trees. Am. J. Physiol. 265:H350-H365, 1993.Google Scholar
  15. 15.
    Kozerke, S., R. Botnar, S. Oyre, M. B. Scheidegger, E. M. Pedersen, and P. Boesiger. Automatic vessel segmentation using active contours in cine phase contrast flow measure-ments. J. Magn. Reson. Imaging. 10:41-51, 1999.Google Scholar
  16. 16.
    Lax, H., A. Feinberg, and B. M. Cohen. The normal pulse wave and its modification in the presence of human athero-sclerosis. J. Chronic. Dis. 3:618-631, 1956.Google Scholar
  17. 17.
    Lighthill, J. Mathematical Biofluiddynamics. 3rd ed. Philadel-phia: Society for Industrial and Applied Mathematics, 1989, pp. 227-253.Google Scholar
  18. 18.
    Murray, C. D. The physiological principle of minimum work applied to the angle of branching of arteries. Am. J. Physiol. 9:835-841, 1926.Google Scholar
  19. 19.
    Nichols, W. W., and M. F. O'Rourke. McDonald's Blood Flow in Arteries, 4th ed. London: Edward Arnold, 1998, p. 564.Google Scholar
  20. 20.
    Olufsen, M. PhD thesis. Modeling the arterial system with reference to an anesthesia simulator. Roskilde: IMFUFA, Roskilde University, Denmark. Text No 345, 1998.Google Scholar
  21. 21.
    Olufsen, M. Structured tree outflow condition for blood flow in larger systemic arteries. Am. J. Physiol. 276:H257-H268, 1999.Google Scholar
  22. 22.
    Papageorgiou, G. L., B. N. Jones, V. J. Redding, and N. Hudson. The area ratio of normal arterial junctions and its implications in pulse wave reflections. Cardiovasc. Res. 24:478-484, 1990.Google Scholar
  23. 23.
    Pedersen, E. M., H.-W. Sung, A. C. Burlson, and A. P. Yoganathan. Two-dimensional velocity measurements in a pulsatile flow model of the abdominal aorta simulating dif-ferent hemodynamic conditions. J. Biomech. 26:1237-1247, 1993.Google Scholar
  24. 24.
    Pedley, T. J. The Fluid Mechanics of Large Blood Vessels. Cambridge: Cambridge University Press, 1980, pp. 1-159.Google Scholar
  25. 25.
    Peskin, C. S. Partial Differential Equations in Biology. New York: Courant Institute of Mathematical Sciences, New York University, 1976, pp. 160-208.Google Scholar
  26. 26.
    Pollanen, M. S. Dimensional optimization at different levels at the arterial hierarchy. J. Theor. Biol. 159:267-270, 1992.Google Scholar
  27. 27.
    Segers, P., F. Dubois, D. DeWachter, and P. Verdonck. Role and relevancy of a cardiovascular simulator. Cardiovasc. Eng. 3:48-56, 1998.Google Scholar
  28. 28.
    Stergiopulos, N., D. F. Young, and T. R. Rogge. Computer simulation of arterial flow with applications to arterial and aortic stenosis. J. Biomech. 25:1477-1488, 1992.Google Scholar
  29. 29.
    Tardy, Y., J. J. Meiseter, F. Perret, H. R. Brunner, and M. Arditi. Non-invasive estimate of the mechanical properties of peripheral arteries from ultrasonic and photoplethysmo-graphic measurements. Clin. Phys. Physiol. Meas. 12:39-54, 1991.Google Scholar
  30. 30.
    Uylings, H. B. M. Optimization of diameters and bifurcation angles in lung and vascular tree structures. Bull. Math. Biol. 39:509-520, 1977.Google Scholar
  31. 31.
    Westerhof, N., F. Bosman, C. J. DeVries, and A. Noorder-graaf. Analog studies of the human systemic arterial tree. J. Biomech. 2:121-143, 1969.Google Scholar
  32. 32.
    Womersley, J. R. An elastic tube theory of pulse transmission and oscillatory flow in mammalian arteries. Technical Report WADC TR:56-614, Wright Air Development Center ~WADC!, Air Research and Development Command, United States Air Force, Wright-Patterson Air Force Base, Ohio, 1957.Google Scholar
  33. 33.
    Young, D. F., and F. Y. Tsai. Flow characteristics in models of arterial stenosis-ii. unsteady flow. J. Biomech. 6:547-559, 1973.Google Scholar
  34. 34.
    Zamir, M. Nonsymmetrical bifurcations in arterial branching. J. Gen. Physiol. 72:837-845, 1978.Google Scholar

Copyright information

© Biomedical Engineering Society 2000

Authors and Affiliations

  • Mette S. Olufsen
    • 1
  • Charles S. Peskin
    • 2
  • Won Yong Kim
    • 3
  • Erik M. Pedersen
    • 3
  • Ali Nadim
    • 4
  • Jesper Larsen
    • 5
  1. 1.Department of Mathematics and Center for BioDynamicsBoston UniversityBoston
  2. 2.Courant Institute of Mathematical SciencesNew York UniversityNew York
  3. 3.Department of Cardiothoracic and Vascular Surgery and MR-Center, Institute for Experimental and Clinical Research, Skejby SygehusAarhus University HospitalAarhus NDenmark
  4. 4.Department of Aerospace and Mechanical Engineering and Center for BioDynamicsBoston UniversityBoston
  5. 5.Math-Tech Inc.CopenhagenDenmark

Personalised recommendations