Annals of Biomedical Engineering

, Volume 28, Issue 8, pp 991–1001

Integration of Cardiac Myofilament Activity and Regulation with Pathways Signaling Hypertrophy and Failure

  • Pieter P. de Tombe
  • R. John Solaro


The syndrome of congestive heart failure (CHF) is an entity of ever increasing clinical significance. CHF is characterized by a steady decrease in cardiac pump function, which is eventually lethal. The mechanisms that underlie the decline in cardiac function are incompletely understood. A central theme in solving the mystery of heart failure is the identification of mechanisms by which the myofilament contractile machine of the myocardium is altered in CHF and how these alterations act in concert with pathways that signal cell growth and death. The cardiac myofilaments are a point of confluence of signals that promote the hypertrophic/failure process. Our hypothesis is that a prevailing hemodynamic stress leads to an increased strain on the myocardium. The increased strain in turn leads to miscues of the normal physiological pathway by which heart cells are signaled to match and adapt the intensity and dynamics of their mechanical activity to prevailing hemodynamic demands. These miscues result in a maladaptation to the stressor and failure of the heart to respond to hemodynamic loads at optimal end diastolic volumes. The result is a vicious cycle exacerbating the failure. Cardiac myofilament activity, the ultimate determinant of cellular dynamics and force, is a central player in the integration and regulation of pathways that signal hypertrophy and failure. © 2000 Biomedical Engineering Society.

PAC00: 8719Hh, 8719Ff, 8719Xx, 8719Rr, 8717-d

Integrative physiology Cardiac pump function Hypertrophy Congestive heart failure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alpert, N. R. Myocardial Hypertrophy and Failure. New York: Raven, 1983.Google Scholar
  2. 2.
    Alpert, N. R., and M. S. Gordon. Myofibrillar adenosine triphosphatase activity in congestive heart failure. Am. J. Physiol. 202:940-946, 1962.Google Scholar
  3. 3.
    Alvarez, B. V., N. G. Perez, I. L. Ennis, M. C. Camilion de Hurtado, and H. E. Cingolani. Mechanisms underlying the increase in force and Ca(2+) transient that follow stretch of cardiac muscle: a possible explanation of the Anrep effect. Circ. Res. 85:716-22, 1999.Google Scholar
  4. 4.
    Anderson, P. A. W., A. Greig, T. M. Mark, N. N. Malouf, A. E. Oakeley, R. M. Ungerleider, P. D. Allen, and B. K. Kay. Molecular basis of human cardiac troponin T isoforms expressed in the developing, adult, and failing heart. Circ. Res. 76:681-686, 1995.Google Scholar
  5. 5.
    Anderson, P. A. W., N. N. Malouf, A. E. Oakeley, E. D. Pagani, and P. D. Allen. Troponin-T isoform expression in humans. A comparison among normal and failing adult heart, fetal heart, and adult and fetal skeletal muscle. Circ. Res. 69:1226-1233, 1991.Google Scholar
  6. 6.
    Ball, K. L., M. D. Johnson, and R. J. Solaro. Isoform specific interactions of troponin I and troponin C determine pH sensitivity of myofibrillar Ca2+ activation. Biochemistry 33:8464-8471, 1994.Google Scholar
  7. 7.
    Barinaga, M. Tracking down mutations that can stop the heart. Science 281:32-34, 1998.Google Scholar
  8. 8.
    Bartel, S., B. Stein, T. Eschenhagen, U. Mende, J. Neumann, W. Schmitz, E. G. Krause, P. Karczewski, and H. Scholz. Protein phosphorylation in isolated trabeculae from nonfailing and failing human hearts.Mol. Cell. Biochem. 157:171-179, 1996.Google Scholar
  9. 9.
    Blaufarb, I. S., and E. H. Sonnenblick. The reninangiotensin system in left ventricular remodeling. Am. J. Cardiol. 77:8C-16C, 1996.Google Scholar
  10. 10.
    Bodor, G. S., A. E. Oakeley, P. D. Allen, D. L. Crimmins, J. H. Ladenson, and P. A. Anderson. Troponin I phosphorylation in the normal and failing adult human heart. Circulation. 96:1495-1500, 1997.Google Scholar
  11. 11.
    Bowman, J. C., S. F. Steinberg, T. Jiang, D. L. Geenen, G. I. Fishman, and P. M. Buttrick. Expression of protein kinase C beta in the heart causes hypertrophy in adult mice and sudden death in neonates. J. Clin. Invest. 100:2189-2195, 1997.Google Scholar
  12. 12.
    Brady, A. J. Mechanical properties of isolated cardiac myocytes. Physiol. Rev. 71:413-428, 1991.Google Scholar
  13. 13.
    Cingolani, H. E., B. V. Alvarez, I. L. Ennis, and M. C. Camilion de Hurtado. Stretch-induced alkalinization of feline papillary muscle: an autocrine-paracrine system. Circ. Res. 83:775-778, 1998.Google Scholar
  14. 14.
    CONSENSUS. Effects enalapril on mortality in severe congestive heart failure. N. Engl. J. Med. 316:1429-1435, 1987.Google Scholar
  15. 15.
    D'Agnolo, A., G. B. Luciani, A. Mazzucco, V. Gallucci, and G. Salviati. Contractile properties and Ca2+ release activity of the sarcoplasmic reticulum in dilated cardiomyopathy. Circulation 85:518-525, 1992.Google Scholar
  16. 16.
    D'Angelo, D. D., Y. Sakata, J. N. Lorenz, G. P. Boivin, R. A. Walsh, S. B. Liggett, and G. W. Dorn, 2nd. Transgenic Galphaq overexpression induces cardiac contractile failure in mice. Proc. Natl. Acad. Sci. U.S.A. 94:8121-8126, 1997.Google Scholar
  17. 17.
    de Tombe, P. P., and G. J. M. Stienen. Protein kinase A does not alter economy of force maintenance in skinned rat cardiac trabeculae. Circ. Res. 76:734-741, 1995.Google Scholar
  18. 18.
    de Tombe, P. P., and H. E. D. J. ter Keurs. Lack of effect of isoproterenol on unloaded velocity of sarcomere shortening in rat cardiac trabeculae. Circ. Res. 68:382-391, 1991.Google Scholar
  19. 19.
    de Tombe, P. P., T. Wannenburg, D. Fan, and W. C. Little. Right ventricular contractile protein function in rats with left ventricular myocardial infarction. Am. J. Physiol. 271:H73-H79, 1996.Google Scholar
  20. 20.
    Dolmetsch, R. E., R. S. Lewis, C. C. Goodnow, and J. I. Healy. Differential activation of transcription factors induced by Ca 2+ response amplitude and duration. Nature (London) 386:855-858, 1997.Google Scholar
  21. 21.
    Dolmetsch, R. E., K. Xu, and R. S. Lewis. Calcium oscillations increase the efficiency and specificity of gene expression. Nature (London) 392:933-936, 1998.Google Scholar
  22. 22.
    Eichhorn, E. J., and M. R. Brostow. Medical therapy can improve the biological properties of the chronically failing heart: a new era in the treatment of heart failure. Circulation 94:2285-2296, 1996.Google Scholar
  23. 23.
    Fan, D. S., T. Wannenburg, and P. P. de Tombe. Decreased myocyte tension development and calcium responsiviness in rat right ventricular pressure overload. Circulation 95:2312-2317, 1997.Google Scholar
  24. 24.
    Feldman, M. D., L. Copelas, J. K. Gwathmey, P. Phillips, S. E. Warren, F. J. Schoen, W. Grossman, and J. P. Morgan. Deficient production of cyclic AMP: pharmacologic evidence of and important cause of contractile dysfunction in patients with end-stage heart failure. Circulation 75:331-339, 1987.Google Scholar
  25. 25.
    Francis, G. S., and J. N. Cohn. Heart failure: Mechanisms of cardiac and vascular dysfunction and the rationale for pharmacologic intervention. FASEB J. 4:3068-3075, 1990.Google Scholar
  26. 26.
    Geenen, D. L., A. Malhotra, and J. Scheuer. Regional variation in rat cardiac myosin isoenzymes and ATPase activity after infarction. Am. J. Phys. 256:H745-H750, 1989.Google Scholar
  27. 27.
    Gruver, C. L., F. DeMayo, M. A. Goldstein, and A. R. Means. Targeted developmental overexpression of calmodulin induces proliferative and hypertrophic growth of cardiomyocytes in transgenic mice. Endocrinology 133:376-388, 1993.Google Scholar
  28. 28.
    Gu, X., and S. P. Bishop. Increased protein kinase C and isozyme redistribution in pressure-overload cardiac hypertrophy in the rat. Circ. Res. 75:926-931, 1994.Google Scholar
  29. 29.
    Gulati, J., A. B. Akella, S. D. Nikolic, V. Starc, and F. Siri. Shifts in contractile regulatory protein subunits troponin T and troponin I in cardiac hypertrophy. Biochem. Biophys. Res. Commun. 202:384-390, 1994.Google Scholar
  30. 30.
    Gwathmey, J. K., and R. J. Hajjar. Relation between steady-state force and intracellular [Ca2+] in intact human myocardium. Index of myofibrillar responsiveness to Ca2+. Circulation 82:1266-1278, 1990.Google Scholar
  31. 31.
    Hajjar, R. J., and J. K. Gwathmey. Cross-bridge dynamics in human ventricular myocardium: Regulation of contractility in the failing heart. Circulation 86:1819-1826, 1992.Google Scholar
  32. 32.
    Hajjar, R. J., J. X. Kang, J. K. Gwathmey, and A. Rosenzweig. Physiological effects of adenoviral gene transfer of sarcoplasmic reticulum ATPase in isolated rat myocytes. Circulation 95:423-429, 1997.Google Scholar
  33. 33.
    Hajjar, R. J., U. Schmidt, P. Helm, and J. K. Gwathmey. Ca++ sensitizers impair cardiac relaxation in human myocardium. J. Pharm. Exp. Ther. 280:247-254, 1997.Google Scholar
  34. 34.
    Hill, A. V. The heat of shortening and the dynamic constants of muscle. Proc. R. Soc. London., Ser. B. 126:1366-1195, 1938.Google Scholar
  35. 35.
    Hofmann, P. A., and J. H. Lange, III. Effects of phosphorylation of troponin I and C protein on isometric tension and velocity of unloaded shortening in skinned single cardiac myocytes from rats. Circ. Res. 74:718-726, 1994.Google Scholar
  36. 36.
    Hofmann, P. A., and R. L. Moss. Effects of calcium on shortening velocity in frog chemically skinned atrial myocytes and in mechanically disrupted ventricular myocardium from rat. Circ. Res. 70:885-892, 1992.Google Scholar
  37. 37.
    Hofmann, P. A., V. Menon, and K. F. Gannaway. Effects of diabetes on isometric tension as a function of [Ca2+] and pH in rat skinned cardiac myocytes. Am. J. Physiol. H269:H1656-H1663, 1995.Google Scholar
  38. 38.
    Holroyde, M. J., D. A. Small, E. Howe, and R. J. Solaro. Isolation of cardiac myofibrils and myosin light chains with in vivo levels of light chain phosphorylation. Biochim. Biophys. Acta 587:628-637, 1979.Google Scholar
  39. 39.
    Holubarsch, C., T. Ruf, D. J. Goldstein, R. C. Ashton, W. Nickl, B. Pieske, K. Pioch, J. Ludemann, S. Wiesner, G. Hasenfuss, H. Posival, H. Just, and D. Burkhoff. Existence of the Frank-Starling mechanism in the failing human heart. Investigations on the organ, tissue, and sarcomere levels. Circulation 94:683-689, 1996.Google Scholar
  40. 40.
    Hunkeler, N. M., J. Kullman, and A. M. Murphy. Troponin-I isoform expression in human heart. Circ. Res. 69:1409-1414, 1991.Google Scholar
  41. 41.
    Ito, N., Y. Kagaya, E. O. Weinberg, W. H. Barry, and B. H. Lorell. Endothelin and Angiotension-II stimulation of Na+ –H+ exchange is impaired in cardiac hypertrophy. J. Clin. Invest. 99:125-135, 1997.Google Scholar
  42. 42.
    Janssen, P. M., and P. P. de Tombe. Protein kinase A does not alter unloaded velocity of sarcomere shortening in skinned rat cardiac trabeculae. Am. J. Physiol. 273:H2415-H2422, 1997.Google Scholar
  43. 43.
    Jeck, C. D., R. Zimmermann, J. Schaper, and W. Schaper. Decreased expression of calmodulin mRNA in human end-stage heart failure. J. Mol. Cell. Cardiol. 26:99-107, 1994.Google Scholar
  44. 44.
    Kentish, J. C., H. E. D. J. ter Keurs, L. Ricciardi, J. J. J. Bucx, and M. I. M. Noble. Comparison between the sarcomere length-force relations of intact and skinned trabeculae from rat right ventricle: influence of calcium concentrations on these relations. Circ. Res. 58:755-768, 1986.Google Scholar
  45. 45.
    Komukai, K., and S. Kurihara. Length dependence of Ca(2+)-tension relationship in aequorin-injected ferret papillary muscles. Am. J. Physiol. 273:H1068-H1074, 1997.Google Scholar
  46. 46.
    Konhilas, J., B. M. Wolska, A. F. Martin, K. A. Palmiter, J. M. Leiden, R. Fentzke, R. J. Solaro, and P. P. de Tombe. Tropnin I isoform composition modulates length dependent activation in murine myocardium. Circulation 98:I-836, 1998.Google Scholar
  47. 47.
    Li, P., P. A. Hofmann, B. S. Li, A. Malhotra, W. Cheng, E. H. Sonnenblick, L. G. Meggs, and P. Anversa. Myocardial infarction alters myofilament calcium sensitivity and me-chanical behavior of myocytes. Am. J. Physiol.:H360-H370, 1997.Google Scholar
  48. 48.
    Liu, X. L., Q. M. Shao, and N. S. Dhalla. Myosin light chain phosphorylation in cardiac hypertrophy and failure due to myocardial infarction. J. Mol. Cell. Cardiol. 27:2613-2621, 1995.Google Scholar
  49. 49.
    Malhotra, A., M. C. Lopez, and A. Nakouzi. Troponin sub-units contribute to altered myosin ATPase activity in diabetic cardiomyopathy. Mol. Cell. Biochem. 151:165-172, 1995.Google Scholar
  50. 50.
    Malhotra, A., A. Nakouzi, J. Bowman, and P. Buttrick. Expression and regulation of mutant forms of cardiac TnI in a reconstituted actomyosin system: role of kinase dependent phosphorylation. Mol. Cell. Biochem. 170:99-107, 1997.Google Scholar
  51. 51.
    Malhotra, A., D. Reich, A. Nakouzi, V. Sanghi, D. L. Geenen, and P. M. Buttrick. Experimental diabetes is associated with functional activation of protein kinase C epsilon and phosphorylation of troponin I in the heart, which are prevented by angiotensin II receptor blockade. Circ. Res. 81:1027-1033, 1997.Google Scholar
  52. 52.
    Margossian, S. S., H. D. White, J. B. Caulfield, P. Norton, S. Taylor, and H. S. Slayter. Light chain 2 profile and activity of human ventricular myosin during dilated cardiomyopathy: Identification of a causal agent for impaired myocardial function. Circulation 85:1720-1733, 1992.Google Scholar
  53. 53.
    Meij, J. T. A., V. Panagia, N. Mesaeli, J. L. Peachell, N. Afzal, and N. S. Dhalla. Identification of changes in cardiac phospholipase C activity in congestive heart failure. J. Mol. Cell. Cardiol. 29:237-246, 1997.Google Scholar
  54. 54.
    Mercadier, J. J., P. Bouverett, L. Gorza, S. Schiaffino, W. A. Clark, R. Zak, B. Swynghedauw, and K. Schwartz. Myosin isoenzymes in normal and hypertrophied human ventricular myocardium. Circ. Res. 53:52-62, 1983.Google Scholar
  55. 55.
    Miyata, S., W. Minobe, M. R. Bristow, and L. A. Leinwand. Myosin heavy chain isoform expression in the failing and nonfailing human heart. Circ. Res. 86:386-390, 2000.Google Scholar
  56. 56.
    Molkentin, J. D., J. R. Lu, C. L. Antos, B. Markham, J. Richardson, J. Robbins, S. R. Grant, and E. N. Olson. A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 93:215-228, 1998.Google Scholar
  57. 57.
    Morano, I., O. Ritter, A. Bonz, T. Timek, C. F. Vahl, and G. Michel. Myosin light chain-actin interaction regulates cardiac contractility. Circ. Res. 76:720-725, 1995.Google Scholar
  58. 58.
    Moss, R. L. Ca2+ regulation of mechanical properties of striated muscle: Mechanistic studies using extraction and replacement of regulatory proteins. Circ. Res. 70:865-884, 1992.Google Scholar
  59. 59.
    Nadal-Ginard, B., and V. Mahdavi. Molecular basis of cardiac performance. Plasticity of the myocardium generated through protein isoform switches. J. Clin. Invest. 84:1693-1700, 1989.Google Scholar
  60. 60.
    Nakao, K., W. Minobe, R. Roden, M. R. Bristow, and L. A. Leinwand. Myosin heavy chain gene expression in human heart failure. J. Clin. Invest. 100:2362-2370, 1997.Google Scholar
  61. 61.
    Nassar, R., N. N. Malouf, M. B. Kelly, A. E. Oakeley, and P. A. Anderson. Force-pCa relation and troponin T isoforms of rabbit myocardium. Circ. Res. 69:1470-1475, 1991.Google Scholar
  62. 62.
    Naya, T., V. Manaves, Y. Mori, M. C. G. Daniels, V. L. M. Rundell, and P. P. de Tombe. Cross-bridge cycling rate during the development of heart failure. Biophys. J. 78:108A, 2000.Google Scholar
  63. 63.
    Nielsen-Kudsk, J. E., and J. Aldershville. Will calcium sensitizers play a role in the treatment of heart failure? J. Cardiovasc. Pharmacol. 26:S77-S84, 1995.Google Scholar
  64. 64.
    Noland, T. A., Jr., X. D. Guo, R. L. Raynor, N. M. Jideama, V. Averyhart-Fullard, R. J. Solaro, and J. F. Kuo. Cardiac troponin I mutants-Phosphorylation by protein kinases C and A and regulation of Ca2+-stimulated MgATPase of reconstituted actomyosin S-1. J. Biol. Chem. 270:25445-25454, 1995.Google Scholar
  65. 65.
    Pagani, E. D., A. A. Alousi, A. M. Grant, T. M. Older, S. W. Dziuban, and P. D. Allen. Changes in myofibrillar content and Mg-ATPase activity in ventricular tissue from patients with heart failure caused by coronary artery disease, cardiomyopathy, or mitral valve insufficiency. Circ. Res. 63:380-385, 1988.Google Scholar
  66. 66.
    Palmer, S., and J. C. Kentish. Roles of Ca2+ crossbridge kinetics in determining the maximum rates of Ca2+ activation and relaxation in rat and guinea pig skinned trabeculae. Circ. Res. 83:179-186, 1998.Google Scholar
  67. 67.
    Palmer, R. E., A. J. Brady, and K. P. Roos. Mechanical measurements from isolated cardiac myocytes using a pipette attachment system. Am. J. Physiol. Cell Physiol. 270:C697-C704, 1996.Google Scholar
  68. 68.
    Palmiter, K. A., and R. J. Solaro. Molecular mechanisms regulating the myofilament response to Ca2+: implications of mutations causal for familial hypertrophic cardiomyopathy. Basic Res. Cardiol. 92:63-74, 1997.Google Scholar
  69. 69.
    Paul, K., N. A. Ball, G. W. Dorn, 2nd., and R. A. Walsh. Left ventricular stretch stimulates angiotensin II-mediated phosphatidylinositol hydrolysis and protein kinase C epsilon isoform translocation in adult guinea pig hearts. Circ. Res. 81:643-650, 1997.Google Scholar
  70. 70.
    Perreault, C. L., O. H. L. Bing, W. W. Brooks, B. J. Ransil, and J. P. Morgan. Differential effects of cardiac hypertrophy and failure on right versus left ventricular calcium activation. Circ. Res. 67:707-712, 1990.Google Scholar
  71. 71.
    Pieske, B., K. Schlotthauer, J. Schattmann, F. Beyersdorf, J. Martin, H. Just, and G. Hasenfuss. Ca(2+)-dependent and Ca(2+)-independent regulation of contractility in isolated human myocardium. Basic Res. Cardiol. 92:75-86, 1997.Google Scholar
  72. 72.
    Pope, B., J. Hoh, and A. Weed. The ATPase activities of rat cardiac myosin isoenzymes. FEBS Lett. 118:205-208, 1980.Google Scholar
  73. 73.
    Rall, J. A. Sense and nonsense about the Fenn effect. Am. J. Physiol. 242:H1-H6, 1982.Google Scholar
  74. 74.
    Rarick, H. M., H. Tang, X. Guo, A. F. Martin, and R. J. Solaro. Interactions at the NH2-terminal interface of cardiac troponin I modulate myofilament activation. J. Mol. Cell. Cardiol. 31:363-375, 1999.Google Scholar
  75. 75.
    Robertson, S. P., J. D. Johnson, M. J. Holroyde, E. G. Kranias, J. D. Potter, and R. J. Solaro. The effect of troponin I phosphorylation on the Ca2+-binding properties of the Ca2+-regulatory site of bovine cardiac troponin. J. Biol. Chem. 257:260-263, 1982.Google Scholar
  76. 76.
    Ruf, T., H. Schulte-Baukloh, J. Ludemann, H. Posival, H. Just, and C. Holubarsch. Alterations of cross-bridge kinetics in human atrial and ventricular myocardium. Cardiovasc. Res. 40:580-590, 1998.Google Scholar
  77. 77.
    Saeki, Y., T. Kobayashi, S. Minamisawa, and H. Sugi. Protein kinase A increases the tension cost and unloaded shortening velocity in skinned rat cardiac muscle. J. Mol. Cell. Cardiol. 29:1655-1663, 1997.Google Scholar
  78. 78.
    Sakata, Y., B. D. Hoit, S. B. Liggett, R. A. Walsh, and G. W. Dorn, 2nd. Decompensation of pressure-overload hypertrophy in G alpha q-overexpressing mice [see comments]. Circulation 97:1488-1495, 1998.Google Scholar
  79. 79.
    Sasse, S., N. J. Brand, P. Kyprianou, G. K. Dhoot, R. Wade, M. Arai, M. Periasamy, M. H. Yacoub, and P. J. R. Barton. Troponin I gene expression during human cardiac development and in end-stage heart failure. Circ. Res. 72:932-938, 1993.Google Scholar
  80. 80.
    Sato, Y., D. G. Ferguson, H. Sako, G. W. Dorn, 2nd., V. J. Kadambi, A. Yatani, B. D. Hoit, R. A. Walsh, and E. G. Kranias. Cardiac-specific overexpression of mouse cardiac calsequestrin is associated with depressed cardiovascular function and hypertrophy in transgenic mice. J. Biol. Chem. 273:28470-28477, 1998.Google Scholar
  81. 81.
    Schwartz, K., K. R. Boheler, D. de la Bastie, A.-M. Lompre, and J.-J. Mercadier. Switches in cardiac muscle gene expression as a result of pressure and volume overload. Am. J. Physiol. Regul. Integr. Comp. Physiol. 262:R364-R369 1992.Google Scholar
  82. 82.
    Schwinger, R. H. G., M. Böhm, A. Koch, U. Schmidt, I. Morano, H.-J. Eissner, P. Ñberfuhr, B. Reichart, and E. Erdmann. The failing human heart is unable to use the Frank-Starling mechanism. Circ. Res. 74:959-969, 1994.Google Scholar
  83. 83.
    Sharir, T., M. D. Feldman, H. Haber, A. M. Feldman, A. Marmor, L. C. Becker, and D. A. Kass. Ventricular systolic assessment in patients with dilated cardiomyopathy by preload-adjusted maximal power. Validation and noninva-sive application. Circulation 89:2045-2053, 1994.Google Scholar
  84. 84.
    Solaro, R. J. Protein Phosphorylation in Heart Muscle. Boca Raton: Chemical Rubber Corp., 1986.Google Scholar
  85. 85.
    Solaro, R. J. Myosin and why hearts fail. Circulation 85:1945-1947, 1992.Google Scholar
  86. 86.
    Solaro, R. J., and H. M. Rarick. Troponin and tropomyosin: proteins that switch on and tune in the activity of cardiac myofilaments. Circ. Res. 83:471-480, 1998.Google Scholar
  87. 87.
    Solaro, R. J., and J. Van Eyk. Altered interactions among thin filament proteins modulate cardiac function. J. Mol. Cell. Cardiol. 28:217-230, 1996.Google Scholar
  88. 88.
    Solaro, R. J., A. J. Moir, and S. V. Perry. Phosphorylation of troponin I and the inotropic effect of adrenaline in the perfused rabbit heart. Nature (London) 262:615-617, 1976.Google Scholar
  89. 89.
    Solaro, R. J., J. A. Lee, J. C. Kentish, and D. G. Allen. Effects of acidosis on ventricular muscle from adult and neonatal rats. Circ. Res. 63:779-787, 1988.Google Scholar
  90. 90.
    Strang, K. T., and R. L. Moss. ?1-adrenergic receptor stimulation decreases maximum shortening velocity of skinned single ventricular myocytes from rats. Circ. Res. 77:114-120, 1995.Google Scholar
  91. 91.
    Strang, K. T., R. M. Mentzer, and R. L. Moss. Slowing of shortening velocity of rat cardiac myocytes by adenosine receptor stimulation regardless of ?-adrenergic stimulation. J. Physiol. (London) 486:679-688, 1995.Google Scholar
  92. 92.
    Strang, K. T., N. K. Sweitzer, M. L. Greaser, and R. L. Moss. ?-adrenergic receptor stimulation increases unloaded shortening velocity of skinned single ventricular myocytes from rats. Circ. Res. 74:542-549, 1994.Google Scholar
  93. 93.
    Sugden, P. H., and A. Clerk. Cellular mechanisms of cardiac hypertrophy. J. Mol. Med. 76:725-746, 1998.Google Scholar
  94. 94.
    Sütsch, G., U. T. Brunner, C. Von Schulthess, H. O. Hirzel, O. M. Hess, M. Turina, H. P. Krayenbuehl, and M. C. Schaub. Hemodynamic performance and myosin light chain-1 expression of the hypertrophied left ventricle in aortic valve disease before and after valve replacement. Circ. Res. 70:1035-1043, 1992.Google Scholar
  95. 95.
    Swynghedauw, B. Developmental and functional adaptation of contractile proteins in cardiac and skeletal muscle. Physiol. Rev. 66:710-771, 1986.Google Scholar
  96. 96.
    Takeishi, Y., G. Chu, D. M. Kirkpatrick, Z. Li, H. Wakasaki, E. G. Kranias, G. L. King, and R. A. Walsh. In vivo phosphorylation of cardiac troponin I by protein kinase Cbeta2 decreases cardiomyocyte calcium responsiveness and contractility in transgenic mouse hearts. J. Clin. Invest. 102:72-78, 1998.Google Scholar
  97. 97.
    Vahl, C. F., A. Bonz, T. Timek, and S. Hagl. Intracellular calcium transient of working human myocardium of seven patients transplanted for congestive heart failure. Circ. Res. 74:952-958, 1994.Google Scholar
  98. 98.
    van Bilsen, M. Signal transduction revisited: recent developments in angiotensin II signaling in the cardiovascular system. Cardiovasc. Res. 36:310-322, 1997.Google Scholar
  99. 99.
    van der Velden, J., A. F. Moorman, and G. J. Stienen. Age-dependent changes in myosin composition correlate with enhanced economy of contraction in guinea-pig hearts. J. Physiol. (London) 507:497-510, 1998.Google Scholar
  100. 100.
    Wolff, M. R., S. H. Buck, S. W. Stoker, M. L. Greaser, and R. M. Mentzer. Myofibrillar calcium sensitivity of isometric tension is increased in human dilated cardiomyopathies: role of altered beta-adrenergically mediated protein phosphorylation. J. Clin. Invest. 98:167-176, 1996.Google Scholar
  101. 101.
    Wolff, M. R., L. F. Whitesell, and R. L. Moss. Calcium sensitivity of isometric tension is increased in canine experimental heart failure. Circ. Res. 76:781-789, 1995.Google Scholar

Copyright information

© Biomedical Engineering Society 2000

Authors and Affiliations

  • Pieter P. de Tombe
    • 1
  • R. John Solaro
    • 1
  1. 1.Department of Physiology and Biophysics and Cardiovascular Science Program, College of MedicineUniversity of Illinois at ChicagoChicago

Personalised recommendations