Annals of Biomedical Engineering

, Volume 28, Issue 8, pp 979–990 | Cite as

Integrative Models for Understanding the Structural Basis of Regional Mechanical Dysfunction in Ischemic Myocardium

  • Reza Mazhari
  • Andrew D. McCulloch


Myocardial ischemia and many other cardiac pathologies are associated with regional ventricular dysfunction. Since the distributions of stress and material properties cannot be measured directly in intact myocardium, understanding how regional alterations in myocardial strain or segment function are related to underlying cellular dysfunction must be deduced from theoretical models. Here, we describe how anatomically detailed, three-dimensional computational models can be used in conjunction with experimental or clinical studies to elucidate the structural basis of regional dysfunction in acutely ischemic and ischemic-reperfused (“stunned”) myocardium in vivo. Integrative experimental and computational analysis shows that: (1) in acutely ischemic myocardium, the transition from abnormal systolic strain in the ischemic region to normal shortening in adjacent, normally perfused tissue is governed primarily by systolic blood pressure and regional fiber orientation rather than the geometry of the perfusion boundary; and (2) in stunned myocardium, the degree of reperfusion injury to the contractile apparatus may be uniform across the wall thickness despite observations that the extent of ischemia and the impairment of regional strain during reperfusion are both significantly greater in the subendocardium. © 2000 Biomedical Engineering Society.

PAC00: 8719Hh, 8719Uv, 8719Ff, 8719Rr, 8710+e

Stunned myocardium Finite-element model Diastolic properties Functional border zone Transmural function Regional blood flow 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allen, D. G., and C. H. Orchard. Myocardial contractile func-tion during ischemia and hypoxia. Circ.Res. 60:153–168, 1987.Google Scholar
  2. 2.
    Armour, A. J. Myocardial ischaemia and the cardiac nervous system. Cardiovasc.Res. 41:41–54, 1999.Google Scholar
  3. 3.
    Bogen, D. K., S. A. Rabinowitz, A. Needleman, T. A. Mc-Mahon, and W. H. Abelmann. An analysis of the mechanical disadvantage of myocardial infarction in the canine left ven-tricle. Circ.Res. 47:728–741, 1980.Google Scholar
  4. 4.
    Bolli, R. Mechanism of myocardial “stunning.” Circulation 82:723–738, 1990.Google Scholar
  5. 5.
    Bolli, R., B. S. Patel, C. J. Hartley, J. I. Thornby, M. O. Jeroudi, and R. Roberts. Nonuniform transmural recovery of contractile function in stunned myocardium. Am.J.Physiol. 257:H375–H385, 1989.Google Scholar
  6. 6.
    Bolli, R., W.-X. Zhu, J. I. Thornby, R. G. O'Neill, and R. Roberts. Time course and determinants of recovery function after reversible ischemia in conscious dogs. Am.J.Physiol. 254:H102–H114, 1988.Google Scholar
  7. 7.
    Bovendeerd, P. H. M., T. Arts, T. Delhaas, J. H. Huyghe, D. H. Van Campen, and R. S. Reneman. Regional wall mechan-ics in the ischemic left ventricle: Numerical modeling and dog experiments. Am.J.Physiol. 270:H398–H410, 1996.Google Scholar
  8. 8.
    Bradley, C. P., A. J. Pullan, and P. J. Hunter. Geometric modeling of the human torso using cubic Hermite elements. Ann.Biomed.Eng. 25:96–111, 1997.Google Scholar
  9. 9.
    Braunwald, E., and R. A. Kloner. The stunned myocardium: Prolonged, postischemic ventricular dysfunction. Circulation 66:1146–1149, 1982.Google Scholar
  10. 10.
    Canty, Jr., J. M.. Coronary pressure–function and steady-state pressure–flow relations during autoregulation in the unanesthetized dog. Circ.Res. 63:821–36, 1988.Google Scholar
  11. 11.
    Charnley, R. H., S. Takahashi, M. Zhao, E. H. Sonnenblick, and C. Eng. Collagen loss in the stunned mycardium. Circu-lation 85:1483–1490, 1992.Google Scholar
  12. 12.
    Costa, K. D., P. J. Hunter, J. M. Rogers, J.M. Guccione, L. K. Waldman, and A. D. McCulloch. A three-dimensional finite-element method for large elastic deformation of ven-tricular myocardium: II-prolate spheroidal coordinates. J.Biomech.Eng. 118:464–472, 1996.Google Scholar
  13. 13.
    Downey, J. M., H. F. Downey, and E. S. Kirk. Effects of myocardial strains on coronary blood flow. Circ.Res. 34:286–292, 1974.Google Scholar
  14. 14.
    Edwards, N. C., A. J. Sinusas, J. D. Bergin, D. D. Watson, M. Ruiz, and G. A. Beller. Influence of subendocardial is-chemia on transmural myocardial function. Am.J.Physiol. 262:H568–H576, 1992.Google Scholar
  15. 15.
    Ehring, T., J. D. Schipke, S. Rainer, and G. Heusch. Diastolic dysfunction of stunned myocardium. Am.J.Cardiovasc.Path. 4:358–366, 1993.Google Scholar
  16. 16.
    Elbeery, J. R., R. F. Williams, J. S. Rankin, D. D. Glower, D.C. Sabiston, Jr., and P. Van Trigt. Effects of arterial hyper-tension on myocardial recovery after ischemic injury. Am.J.Physiol. 263:H559–H564, 1992.Google Scholar
  17. 17.
    Emery, J. L., J. H. Omens, and A. D. McCulloch. Biaxial mechanics of the passively overstretched left ventricle. Am.J.Physiol. 272:H2299–H2305, 1997.Google Scholar
  18. 18.
    Gallagher, K. P., R. A. Gerren, M. Choy, M. C. Stirling, and R. C. Dysko. Subendocardial segment length shortening at lateral margin of ischemic myocardium in dogs. Am.J.Physiol. 253:H826–H837, 1987.Google Scholar
  19. 19.
    Gallagher, K. P., R. A. Gerren, M. C. Stirling, M. Choy, R. C. Dysko, S. P. McManimon, and W. R. Dunham. The dis-tribution of functional impairment across the lateral border of acutely ischemic myocardium. Circ.Res. 58:570–583, 1986.Google Scholar
  20. 20.
    Gallagher, K. P., T. Kumada, J. A. Koziol, M. D. McKown, W. S. Kemper, and J. J. Ross. Significance of regional wall thickening abnormalities relative to transmural myocardial perfusion in anesthetized dogs. Circulation 62:1266–1274, 1980.Google Scholar
  21. 21.
    Gallagher, K. P., M. Matsuzaki, J. A. Koziol, W. S. Kemper, and J. J. Ross. Regional myocardial perfusion and wall thick-ening during ischemia in conscious dogs. Am.J.Physiol. 16: H727–738, 1984.Google Scholar
  22. 22.
    Gallagher, K. P., T. B. McClanahan, M. J. Lynch, S. F. Bolling, and W. R. Dunham. Occlusion of the left anterior descending artery produces a larger functional border zone than circumflex occlusion. Circulation 60th Scientific Session: IV–373, 1987.Google Scholar
  23. 23.
    Gallagher, K. P., X.-H. Ning, R. A. Gerren, D. H. Drake, and W. R. Dunham. Effects of aortic constriction on the func-tional border zone. Am.J.Physiol. 252:H826–H835, 1987.Google Scholar
  24. 24.
    Gao, W. D., D. Atar, P. H. Backx, and E. Marban. Relation-ship between intracellular calcium and contractile force in stunned myocardium. Circ.Res. 76:1036–1048, 1995.Google Scholar
  25. 25.
    Gao, W. D., D. Atar, Y. Liu, N. G. Perez, A. M. Murphy, and E. Marban. Role of troponin I proteolysis in the patho-genesis of stunned myocardium. Circ.Res. 80:393–399, 1997.Google Scholar
  26. 26.
    Gao, W. D., Y. Liu, and E. Marban. Selective effects of oxygen free radicals on excitation–contraction coupling in ventricular muscle. Circulation 94:2597–2604, 1996.Google Scholar
  27. 27.
    Gao, W. D., Y. Liu, R. Mellgren, and E. Marban. Intrinsic myofilament alterations underlying the decreased contractility of stunned myocardium. Circ.Res. 78:455–465, 1996.Google Scholar
  28. 28.
    Gotot, Y., H. Suga, O. Yamada, Y. Igarashi, M. Saito, and K. Hiramori. Left ventricular regional work from wall tension-area loop in canine heart. Am.J.Physiol. 250:H151–H158, 1986.Google Scholar
  29. 29.
    Grossman, W.. Cardiac hypertrophy: useful adaptation or pathologic process? Am.J.Med. 69: 576–583, 1980.Google Scholar
  30. 30.
    Guccione, J. M., K. D. Costa, and A. D. McCulloch. Finite-element stress analysis of left ventricular mechanics in the beating dog heart. J.Biomech. 28:1167–1177, 1995.Google Scholar
  31. 31.
    Guccione, J. M., A. D. McCulloch, and L. K. Waldman. Passive material properties of intact ventricular myocardium determined from a cylindrical model. J.Biomech.Eng. 113:42–55, 1991.Google Scholar
  32. 32.
    Guth, B. D., F. C. White, K. P. Gallagher, and C. M. Bloor. Passive material properties of intact ventricular myocardium determined from a cylindrical model. Am.Heart J. 107:458–464, 1984.Google Scholar
  33. 33.
    Hampton, T. G., I. Amende, K. E. Travers, and J. P. Morgan. Intracellular calcium dynamics in mouse model of myocar-dial stunning. Am.J.Physiol. 274:H1821–H1827, 1998.Google Scholar
  34. 34.
    Hashima, A. R., A. A. Young, A. D. McCulloch, and L. K. Waldman. Nonhomogeneous analysis of epicardial strain distributions during acute myocardial ischemia in the dog. J.Biomech. 26:19–35, 1993.Google Scholar
  35. 35.
    Hearse, D. J.. Reperfusion of the ischemic myocardium. J.Mol.Cell.Cardiol. 9:605–615, 1977.Google Scholar
  36. 36.
    Hearse, D. J., C. A. Muller, M. Fukanami, Y. Kudoh, L. H. Opie, and D. M. Yellon. Regional myocardial ischemia: char-acterization of temporal, transmural and lateral flow inter-faces in the porcine heart. Can.J.Cardiol. 2:48–61, 1986.Google Scholar
  37. 37.
    Heyndrickx, G. R., H. Baig, P. Nellens, I. Leusen, M. C. Fishbein, and S. F. Vatner. Depression of regional blood flow and wall thickening after brief coronary occlusion. Am.J.Physiol. 234:H653–H659, 1978.Google Scholar
  38. 38.
    Hoit, B. D., and W. Y. W. Lew. Functional consequences of acute anterior versus posterior wall ischemia in canine left ventricle. Am.J.Physiol. 254:H1065–H1073, 1988.Google Scholar
  39. 39.
    Huisman, R. M., G. Elzinga, N. Westerhof, and P. Sipkema. Measurement of left ventricular wall stress. Cardiovasc.Res. 14:142–153, 1980.Google Scholar
  40. 40.
    Hunter, P. J., A. D. McCulloch, and H. E. D. J. ter Keurs. Modeling the mechanical properties of cardiac muscle. Prog.Biophys.Mol.Biol. 69:289–331, 1998.Google Scholar
  41. 41.
    Kerber, R. E., M. L. Marcus, J. Ehrhardt, R. Wilson, and F.M. Abboud. Correlation between echocardiographically dem-onstrated segmental dyskinesis and regional myocardial per-fusion. Circulation 52:1097–1104, 1975.Google Scholar
  42. 42.
    Kloner, R. A., R. Bolli, E. Marban, L. Reinlib, and E. Braun-wald. Participants. Medical and cellular implication of stun-ning, hibernation, and preconditioning–An NHLBI workshop Circulation 97:1848–1867, 1998.Google Scholar
  43. 43.
    Kusuoka, H., Y. Koretsune, V. P. Chacko, M. L. Weisfeldt, and E. Marban. Excitation–contraction coupling in postischemic myocardium. Does failure of activator Ca2+ transients underlie stunning? Circ.Res. 66:1268–1276, 1990.Google Scholar
  44. 44.
    Kusuoka, H., and E. Marban. Cellular mechanisms of myocardial stunning. Annu.Rev.Physiol. 54:243–256, 1992.Google Scholar
  45. 45.
    Lew, W. Y. W., Z. Chen, B. Guth, and J. W. Covell. Mecha-nisms of augmented segment shortening in nonischemic area during acute ischemia of the canine left ventricle. Circ.Res. 56:351–358, 1985.Google Scholar
  46. 46.
    Lew, W. Y. W., and M. M. LeWinter. In: Acute Myocardial Infarction: Pathophysiology. Cardiology, Vol. 7, edited by W. W. Parmley and K. Chatterjee. (Philadelphia, PA: Lip-pincott; 1991), pp. 112–133.Google Scholar
  47. 47.
    Lima, J. A., L. C. Becker, J. A. Melin, S. Lima, C. A. Kallman, M. L. Weisfeldt, and J. L. Weiss. Impaired thick-ening of nonischemic myocardium during acute regional is-chemia in the dog. Circulation 71:1048–59, 1985.Google Scholar
  48. 48.
    Lin, D. H. S., and F. C. P. Yin. A multiaxial constitutive law for mammalian left ventricular myocardium in steady-state barium contracture or tetanus. J.Biomech.Eng. 120: 504–517, 1998.Google Scholar
  49. 49.
    Longhurst, J. C. Cardiac receptors: Their function in health and disease. Prog.Cardiovasc.Dis. 27:201–222, 1984.Google Scholar
  50. 50.
    MacKenna, D. A., J. H. Omens, A. D. McCulloch, and J. W. Covell. Contribution of collagen matrix to passive left ven-tricular mechanics in isolated rat hearts. Am.J.Physiol. 266:H1007–H1018, 1994.Google Scholar
  51. 51.
    Malliani, A., M. Pagani, P. Pizzinelli, R. Furlan, and S. Guzzetti. Cardiovascular reflexes mediated by sympathetic afferent fibers. J.Auton.Nerv.Syst. 7:295–301, 1983.Google Scholar
  52. 52.
    Mazhari, R. In: Regional flow–function relations during acute myocardial ischemia and reperfusion. PhD. Thesis. La Jolla, CA: UC San Diego, 1999.Google Scholar
  53. 53.
    Mazhari, R., and A. McCulloch. Three-dimensional mechan-ics of myocardial contraction: Mechanisms of transverse sys-tolic stress. Proc. of ASME 4th Summer Bioeng. Conf. BED, 1999, Vol. 4, pp. 43–44.Google Scholar
  54. 54.
    Mazhari, R., J. H. Omens, L. K. Waldman, and A. D. Mc-Culloch. Regional myocardial perfusion and mechanics: a model-based method of analysis. Ann.Biomed.Eng. 26:743–755, 1998.Google Scholar
  55. 55.
    McCulloch, A. D., D. Sung, J. M. Wilson, R. S. Pavelec, and J. H. Omens. Flow–function relations during graded coronary occlusions in the dog: effects of transmural location and segment orientation. Cardiovasc.Res. 37:636–645, 1998.Google Scholar
  56. 56.
    Murdock, Jr., R. H., D. M. Harlan, J. J. Morris, III, W. W. Pryor, Jr., and F. R. Cobb. Transitional blood flow zones between ischemic and nonischemic myocardium in the awake dog: Analysis based on distribution of the intramural vascu-lature. Circ.Res. 52:451–459, 1983.Google Scholar
  57. 57.
    Nielsen, P. M. F., I. J. LeGrice, B. H. Smaill, and P. J. Hunter. Mathematical model of geometry and fibrous struc-ture of the heart. Am.J.Physiol. 260:H1365–H1378, 1991.Google Scholar
  58. 58.
    Opie, L. H. The Heart. Physiology, from Cell to Circulation, 3rd ed. New York: Lippincott–Raven, 1997.Google Scholar
  59. 59.
    Parmley, W. W., L. Chuck, C. Kovowitz, J. M. Matloff, and J. C. Swan. In vitro length–tension relations of human ven-tricular aneurysms: Relation of stiffness to myocardial disad-vantage. Am.J.Cardiol. 32:889–894, 1973.Google Scholar
  60. 60.
    Pinzen, F. W., T. Arts, A. P. G. Hoeks, and R. S. Reneman. Discrepancies between myocardial blood flow and fiber shortening in the ischemic border zone as assessed with video mapping of epicardial deformation. Eur.J.Physiol. 415:220–229, 1989.Google Scholar
  61. 61.
    Prinzen, F. W., T. Arts, G. J. Van Der Vusse, and R. S. Reneman. Fiber shortening in the inner layers of the left venticular wall as assessed from epicardial deformation dur-ing normoxia and ischemia. J.Biomech. 17:801–812, 1984.Google Scholar
  62. 62.
    Przyklenk, K., and R. A. Kloner. What factors predict recov-ery of contractile function in the canine model of stunned myocardium? Am.J.Cardiol. 64:18F–26F, 1989.Google Scholar
  63. 63.
    Pzyklenk, K., B. Patel, and R. A. Kloner. Diastolic abnor-malities of postischemic “stunned” myocardium. Am.J.Cardiol. 60:1211–1213, 1987.Google Scholar
  64. 64.
    Ross, J. J. Myocardial perfusion-contraction matching. Cir-culation 83:1076–1083, 1991.Google Scholar
  65. 65.
    Rynning, S. E., E. Hexeberg, S. Birkeland, J. Westby, I. Hessevik, and K. Grong. Nonuniform recovery of perfor-mance in stunned myocardium evaluated by two-dimensional sonomicrometry. Acta Physiol.Scand. 149:441–449, 1993.Google Scholar
  66. 66.
    Sakai, K., K. Watanabe, and R. W. Millard. Defining the mechanical border zone: a study in the pig heart. Am.J.Physiol. 249:H88–H94, 1985.Google Scholar
  67. 67.
    Streeter, D. D. J., and W. T. Hanna. Engineering mechanics for successive states in canine left ventricular myocardium-II. Fiber angle and sarcomere length. Circ.Res. 33:656–664, 1973.Google Scholar
  68. 68.
    Stuyvers, B. D., M. Miura, and H. E. ter Keurs. Dynamics of viscoelastic properties of rat cardiac sarcomeres during the diastolic interval: Involvement of Ca2+. J.Physiol. 502:661–677, 1997.Google Scholar
  69. 69.
    Tennant, R., and C. J. Wiggers. The effect of coronary oc-clusion on myocardial contraction. Am.J.Physiol. 112:351–361, 1935.Google Scholar
  70. 70.
    Thames, M. D., M. E. Dibner-Dunlap, A. J. Minisi, and T. Kinugawa. Reflexes mediated by cardiac sympathetic affer-ents during myocardial ischaemia: role of adenosine. Clin.Exp.Pharm.Physiol. 23:709–714, 1996.Google Scholar
  71. 71.
    Torry, R. J., J. H. Myers, A. L. Adler, C. L. Liu, and K. P. Gallagher. Effects of nontransmural ischemia on inner and outer wall thickening in the canine left ventricle. Am.Heart J. 122:1292–1299, 1991.Google Scholar
  72. 72.
    Tyberg, J. V., J. S. Forrester, H. L. Wyatt, S. J. Goldner, W. W. Parmely, and H. J. C. Swan. An analysis of segmental ischemic dysfunction utilizing the pressure–length loop. Cir-culation 49:748–754, 1974.Google Scholar
  73. 73.
    Tyberg, J. V., W. W. Parmely, and E. H. Sonnenblick. In vitro studies of myocardial asynchrony and regional hypoxia. Circ.Res. 25:569–579, 1969.Google Scholar
  74. 74.
    Van Eyk, J. E., F. Powers, W. Law, C. Larue, R. S. Hodges, and R. J. Solaro. Breakdown of myofilament proteins during ischemia/reperfusion in rat hearts—Identification of degrada-tion products and effects on the pCa-force relation. Circ.Res. 82:261–271, 1998.Google Scholar
  75. 75.
    Van Leuven, S. L., L. K. Waldman, A. D. McCulloch, and J. W. Covell. Gradients of epicardial strain across the perfusion boundary during acute myocardial ischemia. Am.J.Physiol. 267:H2348–H2362, 1994.Google Scholar
  76. 76.
    Vatner, S. F. Correlation between acute reductions in myo-cardial blood flow and function in conscious dogs. Circ.Res. 47:201–7, 1980.Google Scholar
  77. 77.
    Villarreal, F. J., W. Y. Lew, L. K. Waldman, and J. W. Covell. Transmural myocardial deformation in the ischemic canine left ventricle. Circ.Res. 68:368–81, 1991.Google Scholar
  78. 78.
    Weintraub, W. S., S. Hattori, J. B. Agarwal, M. M. Beden-heimer, V. S. Banka, and R. H. Helfant. The relationship between myocardial blood flow and contraction by myocar-dial layer in the canine left ventricle during ischemia. Circ.Res. 48:430–438, 1981.Google Scholar
  79. 79.
    Weisman, H. F., and B. Healy. Myocardial infarct expansion, infarct extension, and reinfarction: pathophysiologic con-cepts. Prog.Cardiovasc.Dis. 30:73–110, 1987.Google Scholar
  80. 80.
    Westerhof, N., P. Sipkema, and M. A. Vis. How cardiac contraction affects the coronary vasculature. Adv.Exp.Med.Biol. 430:111–121, 1997.Google Scholar
  81. 81.
    Whittaker, P., D. R. Boughner, R. A. Kloner, and K. Przyklenk. Stunned myocardium and myocardial collagen damage: Differential effects of single and repeated occlu-sions. Am.Heart J. 121:434–441, 1991.Google Scholar
  82. 82.
    Weigner, A. W., G. J. Allen, and O. H. L. Bing. Weak and strong myocardium in series: implication for segmental dys-function. Am.J.Physiol. 4:H776–H783, 1978.Google Scholar
  83. 83.
    Wijns, W., P. W. Serruys, C. J. Slager, J. Grimm, H. P. Krayenbuehl, P. G. Hugenholtz, and O. M. Hess. Effect of coronary occlusion during percutaneous transluminal angio-plasty in humans on left ventricular chamber stiffness and regional diastolic pressure–radius relations. J.Am.Coll.Car-diol. 7:455–463, 1986.Google Scholar
  84. 84.
    Wyatt, H. L., J. S. Forrester, P. L. da Luz, G. A. Diamond, R. Chagrasulis, and H. J. C. Swan. Functional abnormalities in nonoccluded regions of myocardium after experimental coronary occlusion. Am.J.Cardiol. 37:366–372, 1976.Google Scholar
  85. 85.
    Yellon, D. M., D. J. Hearse, R. Crome, J. Grannell, and R. K. Wyse. Characterization of the lateral interface between nor-mal and ischemic tissue in the canine heart during evolving myocardial infarction. Am.J.Cardiol. 47:1233–1239, 1981.Google Scholar
  86. 86.
    Yin, F. C. P. Ventricular wall stress. Circ.Res. 49:829–842, 1981.Google Scholar
  87. 87.
    Young, A. A., and L. Axel. Three-dimensional motion and deformation of heart wall: Estimation with spatial modulation of magnetization—a model-based approach. Radiology 185:241–247, 1992.Google Scholar
  88. 88.
    Zhao, M., H. Zhang, T. F. Robinson, S. M. Factor, E. H. Sonnenblick, and C. Eng. Profound structural alterations of the extracellular collagen matrix on postischemic dysfunc-tional (“stunned”) but viable myocardium. J.Am.Coll.Car-diol. 10:1322–1334, 1987.Google Scholar

Copyright information

© Biomedical Engineering Society 2000

Authors and Affiliations

  • Reza Mazhari
    • 1
  • Andrew D. McCulloch
    • 1
  1. 1.Department of Bioengineering, The Whitaker Institute for Biomedical EngineeringUniversity of CaliforniaSan Diego, La Jolla

Personalised recommendations