Advertisement

Annals of Biomedical Engineering

, Volume 28, Issue 6, pp 629–640 | Cite as

Cardiac Mechanoenergetics Replicated by Cross-Bridge Model

  • Marko Vendelin
  • Peter H. M. Bovendeerd
  • Theo Arts
  • Jüri Engelbrecht
  • Dick H. van Campen
Article

Abstract

The aim of this work is to reproduce the experimentally measured linear dependence of cardiac muscle oxygen consumption on stress–strain area using a model, composed of a three-state Huxley-type model for cross-bridge interaction and a phenomenological model of Ca2+-induced activation. By selecting particular cross-bridge cycling rate constants and modifying the cross-bridge activation model, we replicated the linear dependence between oxygen consumption and stress–strain area together with other important mechanical properties of cardiac muscle such as developed stress dependence on the sarcomere length and force-velocity relationship. The model predicts that (1) the amount of the “passenger” cross bridges, i.e., cross bridges that detach without hydrolyzing ATP molecule, is relatively small and (2) ATP consumption rate profile within a beat and the amount of the passenger cross bridges depend on the contraction protocol. © 2000 Biomedical Engineering Society.

PAC00: 8719Rr, 8719Ff, 8710+e, 8719Hh

Heart Stress–strain area Oxygen consumption Mathematical modeling Huxley-type model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Bovendeerd, P. H., T. Arts, J. M. Huyghe, D. H. van Campen, and R. S. Reneman. Dependence of local left ven-tricular wall mechanics on myocardial fiber orientation: a model study. J.Biomech.25:1129–1140, 1992.Google Scholar
  2. 2.
    Brutsaert, D. L., N. M. de Clerck, M. A. Goethals, and P. R. Housmans. Relaxation of ventricular cardiac muscle. J. Physiol.(London) 283:469–480, 1978.Google Scholar
  3. 3.
    Callewaert, G. Excitation-contraction coupling in mammalian cardiac cells. Cardiovasc.Res. 26:923–932, 1992.Google Scholar
  4. 4.
    Cooke, R., H. White, and E. Pate. A model of the release of myosin heads from actin in rapidly contracting muscle fibers. Biophys.J. 66:778–788, 1994.Google Scholar
  5. 5.
    Daniel, T. L., A. C. Trimble, and P. B. Chase. Compliant realignment of binding sites in muscle: transient behavior and mechanical tuning. Biophys.J.74:1611–1621, 1998.Google Scholar
  6. 6.
    Delhaas, T., T. Arts, F. W. Prinzen, and R. S. Reneman. Regional fibre stress-fibre strain area as an estimate of re-gional blood flow and oxygen demand in the canine heart. J. Physiol.(London) 477:481–496, 1994.Google Scholar
  7. 7.
    Dong, W., S. S. Rosenfeld, C. K. Wang, A. M. Gordon, and H. C. Cheung. Kinetic studies of calcium binding to the regulatory site of troponin C from cardiac muscle. J.Biol. Chem. 271:688–694, 1996.Google Scholar
  8. 8.
    Duwel, C. M., and N. Westerhof. Feline left ventricular oxy-gen consumption is not affected by volume expansion, ejection or redevelopment of pressure during relaxation. Pflugers Arch. 412:409–416, 1988.Google Scholar
  9. 9.
    Eisenberg, E., T. L. Hill, and Y. Chen. Cross-bridge model of muscle contraction. Quantitative analysis. Biophys.J. 29:195–227, 1980.Google Scholar
  10. 10.
    Gibbs, C. L., and C. J. Barclay. Cardiac efficiency. Cardio-vasc. Res. 30:627–634, 1995.Google Scholar
  11. 11.
    Gibbs, C. L., and J. B. Chapman. Cardiac mechanics and energetics: chemomechanical transduction in cardiac muscle. Am.J.Physiol. 249:H199–H206, 1985.Google Scholar
  12. 12.
    Goldman, Y. E. Kinetics of the actomyosin ATPase in muscle fibers. Annu.Rev.Physiol. 49:637–654, 1987.Google Scholar
  13. 13.
    Hill, T. L. Theoretical formalism for the sliding filament model of contraction of striated muscle. Part I. Prog.Bio-phys. Mol.Biol. 28:267–340, 1974.Google Scholar
  14. 14.
    Hisano, R., and G. Cooper. IV. Correlation of force-length area with oxygen consumption in ferret papillary muscle. Circ.Res.61:318–328, 1987.Google Scholar
  15. 15.
    Huxley, H. E. Sliding filaments and molecular motile systems. J.Biol.Chem. 265:8347–8350, 1990.Google Scholar
  16. 16.
    Irving, M. Weak and strong crossbridges. Nature (London) 316:292–293, 1985.Google Scholar
  17. 17.
    Janssen, P. M. and W. C. Hunter. Force, not sarcomere length, correlates with prolongation of isosarcometric contraction. Am.J.Physiol. 269:676–685, 1995.Google Scholar
  18. 18.
    Jewell, B. R. A reexamination of the influence of muscle length on myocardial performance. Circ.Res. 40:221–230, 1977.Google Scholar
  19. 19.
    Lakatta, E. G., Length modulation of muscle performance: Frank-Starling law of the heart. In: H. A. Fozzard, E. Haber, R. B. Jennings, A. M. Katz, and H. E. Morgan, eds., The Heart and Cardiovascular System, New York: Raven, 2nd ed., 1992, pp. 1325–1351.Google Scholar
  20. 20.
    Landesberg, A., and S. Sideman. Coupling calcium binding to troponin C and cross-bridge cycling in skinned cardiac cells Am.J.Physiol. 266:1260–1271, 1994.Google Scholar
  21. 21.
    Landesberg, A., and S. Sideman. Regulation of energy con-sumption in cardiac muscle: analysis of isometric contractions. Am.J.Physiol. 276:H998–H1011, 1999.Google Scholar
  22. 22.
    Moré, J. J., D. C. Sorensen, K. E. Hillstrom, and B. S. Garbow. The MINPACK project. In: W. J. Cowell, ed., Sources and Development of Mathematical Software. Englewood Cliffs, NJ: Prentice-Hall, 1984.Google Scholar
  23. 23.
    Panerai, R. B. A model of cardiac muscle mechanics and energetics. J.Biomech. 13:929–940, 1980.Google Scholar
  24. 24.
    Pate, E., and R. Cooke. A model of crossbridge action: the effects of ATP, ADP and Pi. J.Muscle Res.Cell Motil.10:181–196, 1989.Google Scholar
  25. 25.
    Rijcken, J., P. H. Bovendeerd, A. J. Schoofs, D. H. van Campen, and T. Arts. Optimization of cardiac fiber orienta-tion for homogeneous fiber strain at beginning of ejection. J. Biomech. 30:1041–1049, 1997.Google Scholar
  26. 26.
    Saeki, Y. Crossbridge dynamics under various inotropic states in cardiac muscle: evaluation by perturbation analyses. Jpn.J.Phys. 45:687–705, 1995.Google Scholar
  27. 27.
    Suga, H. Ventricular energetics. Physiol.Rev. 70:247–277, 1990.Google Scholar
  28. 28.
    Taylor, E. W. Mechanism and energetics of actomyosin ATPase. In: H. A. Fozzard, E. Haber, R. B. Jennings, A. M. Katz, and H. E. Morgan, eds., The Heart and Cardiovascular System, New York, Raven, 2nd ed., 1992.Google Scholar
  29. 29.
    Taylor, T. W., Y. Goto, K. Hata, T. Takasago, A. Saeki, T. Nishioka, and H. Suga. Comparison of the cardiac force-time integral with energetics using a cardiac muscle model. J. Biomech. 26:1217–1225, 1993.Google Scholar
  30. 30.
    Taylor, T. W., Y. Goto, K. Hata, T. Takasago, A. Saeki, T. Nishioka, and H. Suga. Cardiac quick-release contraction mechanoenergetics analysis using a cardiac muscle cross-bridge model. Am.J.Physiol. 268:H2544–H2552, 1995.Google Scholar
  31. 31.
    Taylor, T. W., Y. Goto, and H. Suga. Variable cross-bridge cycling-ATP coupling accounts for cardiac mechanoenergetics. Am.J.Physiol. 264:H994–1004, 1993.Google Scholar
  32. 32.
    Tobacman, L. S., and D. Sawyer. Calcium binds coopera-tively to the regulatory sites of the cardiac thin filament, J. Biol.Chem. 265:931–939, 1990.Google Scholar
  33. 33.
    van der Velden, J., A. F. Moorman, and G. J. Stienen. Age-dependent changes in myosin composition correlate with enhanced economy of contraction in guinea-pig hearts. J. Physiol.(London) 507:497–510, 1998.Google Scholar
  34. 34.
    van Heuningen, R., W. H. Rijnsburger, and H. E. ter Keurs. Sarcomere length control in striated muscle. Am.J.Physiol. 242:H411–H420, 1982.Google Scholar
  35. 35.
    Zahalak, G. I., and S. P. Ma. Muscle activation and contrac-tion: constitutive relations based directly on cross-bridge kinetics. J.Biomech.Eng. 112:52–62, 1990.Google Scholar

Copyright information

© Biomedical Engineering Society 2000

Authors and Affiliations

  • Marko Vendelin
    • 1
  • Peter H. M. Bovendeerd
    • 2
  • Theo Arts
    • 2
    • 3
  • Jüri Engelbrecht
    • 1
  • Dick H. van Campen
    • 2
  1. 1.Institute of Cybernetics atTallinn Technical UniversityTallinnEstonia
  2. 2.Department of Mechanical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
  3. 3.Department of BiophysicsMaastricht UniversityMaastrichtThe Netherlands

Personalised recommendations