Annals of Biomedical Engineering

, Volume 28, Issue 7, pp 781–792 | Cite as

Three-Dimensional Stress and Strain in Passive Rabbit Left Ventricle: A Model Study

  • Frederick J. Vetter
  • Andrew D. McCulloch


To determine regional stress and strain distributions in rabbit ventricular myocardium, an anatomically detailed finite element model was used to solve the equations of stress equilibrium during passive filling of the left ventricle. Computations were conducted on a scalable parallel processing computer and performance was found to scale well with the number of processors used, so that stimulations previously requiring approximately 60 min were completed in just over 5 min. Epicardial strains from the model analysis showed good agreement (RMSE=0.007332) with experimental measurements when material properties were chosen such that cross fiber strain was more heterogeneous than fiber strain, which is also consistent with experimental observations in other species. © 2000 Biomedical Engineering Society.

PAC00: 8719Hh, 8719Rr, 8710+e

Ventricular mechanics Scalable parallel computation Finite element analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bovendeerd, P. H., T. Arts, J. M. Huyghe, D. H. van Campen, and R. S. Reneman. Dependence of local left ventricular wall mechanics on myocardial fiber orientation: A model study. J. Biomech. 25(10):1129–1140, 1992.Google Scholar
  2. 2.
    Bovendeerd, P. H. M., J. M. Huyghe, T. Arts, D. H. van Campen, and R. S. Reneman. Influence of endocardialepicardial crossover of muscle fibers on left ventricular wall mechanics. J. Biomech. 27(7):941–951, 1994.Google Scholar
  3. 3.
    Bovendeerd, P. H., T. Arts, T. Delhaas, J. M. Huyghe, D. H. van Campen, and R. S. Reneman. Regional wall mechanics in the ischemic left ventricle: numerical modeling and dog experiments. Am. J. Physiol. 270(39):H398–H410, 1996.Google Scholar
  4. 4.
    Bradfield, J. W. B., G. Beck, and R. J. Vecht. Left ventricular apical thin point. Br. Heart J. 39(7):806–809, 1977.Google Scholar
  5. 5.
    Costa, K. D. The structural basis of three-dimensional ventricular mechanics. Ph.D. thesis, University of California, La Jolla, CA, 1996.Google Scholar
  6. 6.
    Costa, K. D., P. J. Hunter, J. M. Rogers, J. M. Guccione, L. K. Waldman, and A. D. McCulloch. A three-dimensional finite element method for large elastic deformations of ventricular myocardium: II—prolate spheroidal coordinates. J. Biomech. Eng. 118(4):464–472, 1996.Google Scholar
  7. 7.
    Costa, K. D., K. May-Newman, D. Farr, W. G. O'Dell, A. D. McCulloch, and J. H. Omens. Three-dimensional residual 791 Modeling Three-Dimensional LV Passive Mechanics strain in midanterior canine left ventricle. Am. J. Physiol. 273(42):H1968–H1976, 1997.Google Scholar
  8. 8.
    Dias da Cunha, R., and T. Hopkins. A parallel implementation of the restarted GMRES iterative algorithm for nonsymmetric systems of linear equations. Adv. Comput. Math. 2(3):261–277, 1994.Google Scholar
  9. 9.
    Emery, J. L., J. H. Omens, and A. D. McCulloch. Biaxial mechanics of the passively overstretched left ventricle. Am. J. Physiol. 272(41):H2299–H2305, 1997.Google Scholar
  10. 10.
    Gallagher, A. M., J. H. Omens, L. L. Chu, and J. W. Covell. Alterations in collagen fibrillar structure and mechanical properties of the healing scar following myocardial infarction. Cardiovasc. Pathobiol. 2(1):25–36, 1997.Google Scholar
  11. 11.
    Gray, R. A., J. Jalife, A. V. Panfilov, W. T. Baxter, C. Cabo, J. M. Davidenko, and A. M. Pertsov. Nonstationary vortexlike reentrant activity as a mechanism of polymorphic ventricular tachycardia in the isolated rabbit heart. Circulation 91(9):2454–2469, 1995.Google Scholar
  12. 12.
    Green, A. E., and J. E. Adkins. Large Elastic Deformations, 2nd ed. Clarendon, Oxford, 1970.Google Scholar
  13. 13.
    Guccione, J. M., K. D. Costa, and A. D. McCulloch. Finite element stress analysis of left ventricular mechanics in the beating dog heart. J. Biomech. 28(10):1167–1177, Oct 1995.Google Scholar
  14. 14.
    Guccione, J. M., A. D. McCulloch, and L. K. Waldman. Passive material properties of intact ventricular myocardium determined from a cylindrical model. J. Biomech. Eng. 113(1):42–55, 1991.Google Scholar
  15. 15.
    Holmes, J. W., J. A. Nunëz, and J. W. Covell. Functional implications of myocardial scar structure. Am. J. Physiol. 272(41):H2123–H2130, 1997.Google Scholar
  16. 16.
    Hughes, T. J. R., I. Levit, and J. Winget. An element-byelement solution algorithm for problems of structural and solid mechanics. Comput. Methods Appl. Mech. Eng. 36:241–254, 1983.Google Scholar
  17. 17.
    Humphrey, J. D., and F. C. Yin. Constitutive relations and finite deformations of passive cardiac tissue II: stress analysis in the left ventricle. Circ. Res. 65(3):805–817, 1989.Google Scholar
  18. 18.
    Hutchinson, S. A., L. V. Prevost, C. H. T. J. N. Shadidxi, and R. S. Tuminaro. Aztec User's Guide Version 2.0. Sandia National Laboratories, Albuquerque NM 87185, Jul 1998. Available from Aztec–ug–2.0.psGoogle Scholar
  19. 19.
    Huyghe, J. M., T. Arts, D. H. van Campen, and R. S. Reneman. Porous medium finite element model of the beating left ventricle. Am. J. Physiol. 262(31):H1256–H1267, 1992.Google Scholar
  20. 20.
    Huyghe, J. M., D. H. van Campen, T. Arts, and R. M. Heethaar. A two-phase finite element model of the diastolic left ventricle. J. Biomech. 24(7):527–538, 1991.Google Scholar
  21. 21.
    Jones, M. T., and P. E. Plassmann. BlockSolve95 Users Manual: Scalable Library Software for the Parallel Solution of Sparse Linear Systems. Argonne National Laboratory, 9700 South Class Avenue, Argonne IL 60439, Jun 1997; Argonne National Laboratory Report 95/48 (revised June 1997). Available from Scholar
  22. 22.
    LeGrice, I. J., B. H. Smaill, L. Z. Chai, S. G. Edgar, J. B. Gavin, and P. J. Hunter. Laminar structure of the heart: Ventricular myocyte arrangement and connective tissue architecture in the dog. Am. J. Physiol. 269(38):H571–H582, 1995.Google Scholar
  23. 23.
    Lin, D. H. S., and F. C. P. Yin. A multiaxial constitutive law for mammalian left ventricular myocardiumin steady-state barium contracture or tetanus. J. Biomech. Eng. 120(4):504–517, 1998.Google Scholar
  24. 24.
    Nielsen, P. M. F., I. J. LeGrice, B. H. Smaill, and P. J. Hunter. Mathematical model of geometry and fibrous structure of the heart. Am. J. Physiol. 260(29):H1365–H1378, 1991.Google Scholar
  25. 25.
    O'Dell, W. G., and A. D. McCulloch. A novel numerical formulation for modeling tissue compressibility. Adv. Bioeng. BED-39:1-2, 1998; Proceedings of the 1998 ASME International Mechanical Engineering Congress and Exposition, 15–20 November 1998, Anaheim, California. Edited by Ajit P. YoganathGoogle Scholar
  26. 26.
    Omens, J. H., K. D. May, and A. D. McCulloch. Transmural distribution of three-dimensional strain in the isolated arrested canine left ventricle.Am. J. Physiol. 261(30):H918–H928, 1991.Google Scholar
  27. 27.
    Omens, J. H., D. A. MacKenna, and A. D. McCulloch. Measurement of strain and analysis of stress in resting rat left ventricular myocardium. J. Biomech. 26(6):665–676, 1993.Google Scholar
  28. 28.
    Saad, Y., G.-C. Lo, and S. Kuznetsov. PSPARSLIB Users Manual: A Portable Library of parallel Sparse Iterative Solvers. University of Minnesota, Department of Computer Science, 200 Union Street S. E., Minneapolis, MN55455, Jan 1998. Available from p–sparslib/psp/DOCS/ Scholar
  29. 29.
    Streeter, Jr., D. D. Gross morphology and fiber geometry of the heart. In: Handbook of Physiology, Section 2: The Cardiovascular System, edited by R. M. Berne, Vol. 1, Chap. 4, pp. 61–112. Bethesda, MD: American Physiological Society, 1979.Google Scholar
  30. 30.
    Vetter, F. J., and A. D. McCulloch. Three-dimensional analysis of regional cardiac function: A model of rabbit ventricular anatomy. Prog. Biophys. Mol. Biol. 69(2/3):157–183, 1998.Google Scholar
  31. 31.
    _Waldman, L. K. Multidimensional measurement of regional strains in the intact heart. In: Theory of Heart: Biomechanics, Biophysics, and Nonlinear Dynamics of Cardiac Function, edited by L. Glass, P. Hunter, and A. McCulloch, Chap. 7, pp. 145–174. New York: Springer, 1991.Google Scholar
  32. 32.
    Wathen, A. J. An analysis of some element-by-element techniques. Comput. Methods Appl. Mech. Eng. 74(3):271–287, 1989.Google Scholar
  33. 33.
    _Watkins, M. W., B. K. Slinker, Y. Goto, and M. M. LeWinter. 2,3-Butanedione monoxime increases contractile effi-ciency in the rabbit ventricle. Am. J. Physiol. 263(32):H1811–H1818, 1992.Google Scholar
  34. 34.
    _Yeckel, A., and J. J. Derby. Parallel computation of incompressible flows in materials processing: Numerical experiments in diagonal preconditioning. Parallel Comput. 23(9):1379–1400, 1997.Google Scholar
  35. 35.
    _Yin, F. C. P., C. C. Chan, and R. M. Judd. Compressibility of perfused passive myocardium. Am. J. Physiol. 271(40):H1864–H1870, 1996.Google Scholar

Copyright information

© Biomedical Engineering Society 2000

Authors and Affiliations

  • Frederick J. Vetter
    • 1
  • Andrew D. McCulloch
    • 1
  1. 1.Department of BioengineeringUniversity of California San DiegoSan Diego

Personalised recommendations