Skip to main content

Advertisement

Log in

Chronic intermittent hypoxia and the expression of orexin and its receptors in the brains of rats

  • Original Article
  • Published:
Sleep and Biological Rhythms Aims and scope Submit manuscript

Abstract

Chronic intermittent hypoxia (CIH) is the main pathophysiological feature of obstructive sleep apnea (OSA). It destroys the normal sleep rhythm and affects many basic physiological processes, leading to repeated arousal from sleep. Orexin, a very potent arousal neuromodulator found in the brain, has been shown to play a significant role in the promotion and maintenance of arousal. These findings may indicate that orexin participates in the arousal-promoted processes induced by CIH. However, so far, little is known about alterations in orexin and its receptors during CIH. In the present study, the influence of CIH and re-oxygenation on the expression of prepro-orexin (PPO) in the hypothalamus and orexin receptors in the hypothalamus and the medulla of rats were evaluated. The expression of PPO, OX1R, and OX2R mRNA was evaluated by RT-PCR after the rats had been exposed to intermittent hypoxia (IH) for either 1 week or 5 weeks. The control group was exposed to intermittent air (IA). The results showed the levels of expression of PPO, OX1R, and OX2R mRNA to be significantly higher in the brains of rats exposed to IH for 5 weeks than in the brains of control rats. This effect was reversed by 5 weeks of re-oxygenation. These findings indicated that CIH could increase the expression of orexin and its receptors in the brain. This may contribute to the sleep fragmentation experienced by patients with OSA, which is induced by repeated arousal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Young T, Peppard P, Gottlieb D. Epidemiology of obstructive sleep apnea: a population heath perspective. Am. J. Respir. Crit. Care Med. 2002; 165 (9): 1217–39.

    Article  PubMed  Google Scholar 

  2. White DP. Sleep-related breathing disorder, 2: pathophysiology of obstructive sleep apnoea. Thorax 1995; 50: 797–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Naegele B, Thouvard V, Pepin JL et al. Deficits of cognitive executive functions in patients with sleep apnea syndrome. Sleep 1995; 18: 43–52.

    CAS  PubMed  Google Scholar 

  4. Row BW, Liu R, Xu W, Kheirandish L, Gozal D. Intermittent hypoxia is associated with oxidative stress and spatial learning deficits in the rat. Am. J. Respir. Crit. Care Med. 2003; 167: 1548–53.

    Article  PubMed  Google Scholar 

  5. Li G, Hou G, Lu W, Kang J. Melatonin protects mice with intermittent hypoxia from oxidative stress-induced pancreatic injury. Sleep Biol. Rhythms 2011; 9: 78–85.

    Article  Google Scholar 

  6. Fletcher EC, Lesske J, Qian W, Miller CC, Unger T. Repetitive, episodic hypoxia causes diurnal elevation of blood pressure in rats. Hypertension 1992; 19: 555–61.

    Article  CAS  PubMed  Google Scholar 

  7. Kohler M, Stradling JR. Mechanisms of vascular damage in obstructive sleep apnea. Nat. Rev. Cardiol. 2010; 7: 677–85.

    PubMed  Google Scholar 

  8. Valenza MC, Valenza G, Munoz-Casaubon T et al. Epidemiology of sleep-related complaints associated with obstructive sleep apnea, insomnia and non-restorative sleep in an at-risk population in Granada, Spain. Sleep Biol. Rhythms 2012; 10: 222–30.

    Article  Google Scholar 

  9. Vakulin A, Catcheside PG, van den Heuvel CJ, Antic NA, Mcevoy RD, Baulk SD. Increased rate of traffic law infringements during on-road metropolitan driving in obstructive sleep apnea patients. Sleep Biol. Rhythms 2011; 9: 144–9.

    Article  Google Scholar 

  10. Young T, Blustein J, Finn L, Palta M. Sleep-disordered breathing and motor vehicle accidents in a population based sample of employed adults. Sleep 1997; 20: 608–13.

    CAS  PubMed  Google Scholar 

  11. de Lecea L, Kilduff TS, Peyron C et al. The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc. Natl Acad. Sci. U.S.A. 1998; 95: 322–7.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sakurai T. The neural circuit of orexin (hypocretin): maintaining sleep and wakefulness. Nat. Rev. Neurosci. 2007; 8: 171–81.

    Article  CAS  PubMed  Google Scholar 

  13. Nishino S, Ripley B, Overeem S, Lammers GJ, Mignot E. Hypocretin (orexin) deficiency in human narcolepsy. Lancet 2000; 355: 39–40.

    Article  CAS  PubMed  Google Scholar 

  14. Igarashi N, Tatsumi K, Nakamura A et al. Plasma orexin-A levels in obstructive sleep apnea-hypopnea syndrome. Chest 2003; 124: 1381–5.

    Article  CAS  PubMed  Google Scholar 

  15. Nambu T, Sakurai T, Mizukami K, Hosoya Y, Yanagisawa M, Goto K. Distribution of orexin neurons in the adult rat brain. Brain Res. 1999; 827: 243–60.

    Article  CAS  PubMed  Google Scholar 

  16. White DP. The pathogenesis of obstructive sleep apnea: advances in the past 100 years. Am. J. Respir. Cell Mol. Biol. 2006; 34: 1–6.

    Article  CAS  PubMed  Google Scholar 

  17. Fung SJ, Yamuy J, Sampogna S, Morales FR, Chase MH. Hypocretin (orexin) input to trigeminal and hypoglossal motoneurons in the cat: a doble-labeling immunohistochemical study. Brain Res. 2001; 903: 257–62.

    Article  CAS  PubMed  Google Scholar 

  18. Sullivan CE, Issa FG, Berthon-Jones M, Eves L. Reversal of obstructive sleep apnoea by continuous positive airway pressure applied through the nares. Lancet 1981; 1: 862–5.

    Article  CAS  PubMed  Google Scholar 

  19. Gu CJ, Li M, Li QY, Li N. Chronic intermittent hypoxia increases beta cell mass and activates the mammalian target of rapamycin/hypoxia inducible factor 1/vascular endothelial growth factor A pathway in mice pancreatic islet. Chin. Med. J. 2013; 126: 2368–73.

    CAS  PubMed  Google Scholar 

  20. Wu XD, Huang JH, Kong DH et al. Establishment of a rat chronic intermittent hypoxia model and evaluation by echocardiogram. Fudan Univ. J. Med. Sci. 2011; 38: 481–4.

    Google Scholar 

  21. Liu ZB, Song NN, Geng WY et al. Orexin-A and respiration in rat model of smoke-incuced chronic obstructive pulmonary disease. Clin. Exp. Pharmacol. Physiol. 2010; 37: 963–8.

    Article  CAS  PubMed  Google Scholar 

  22. Huang ZL, Qu WM, Li WD et al. Arousal effect of orexin A depends on activation of the histaminergic system. Proc. Natl Acad. Sci. U.S.A. 2001; 98: 9965–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Thannickal TC, Moore RY, Nienhuis R et al. Reduced number of hypocretin neurons in human narcolepsy. Neuron 2000; 27: 469–74.

    Article  CAS  PubMed  Google Scholar 

  24. Dempsey JA, Veasey SC, Morgan BJ, O’Doneel CP. Pathophysiology of sleep apnea. Physiol. Rev. 2010; 90: 47–112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Busquets X, Barbe F, Barcelo A et al. Decreased plasma levels of orexin-A in sleep apnea. Respiration 2004; 71: 575–9.

    Article  CAS  PubMed  Google Scholar 

  26. Fletcher EC, Lesske J, Behm R, Miller CC 3rd, Stauss H, Unger T. Carotid chemoreceptors, systemic blood pressure, and chronic episodic hypoxia mimicking sleep apnea. J. Appl. Physiol. (1985) 1992; 72: 1978–84.

    CAS  Google Scholar 

  27. Arnardottir ES, Machiewicz M, Gislason T, Teff KL, Pack AL. Molecular signatures of obstructive sleep apnea in adults: a review and perspective. Sleep 2009; 32: 447–70.

    PubMed  PubMed Central  Google Scholar 

  28. Wang W, Li Q, Pan Y, Zhu D, Wang L. Influence of hypercapnia on the synthesis of neuropeptides and their receptors. Respirology 2013; 18: 102–7.

    Article  PubMed  Google Scholar 

  29. Willie JT, Chemelli RM, Sinton CM et al. Distinct narcolepsy syndromes in orexin receptor-2 and orexin null mice: molecular genetic dissection of Non-REM and REM sleep regulatory processes. Neuron 2003; 38: 715–30.

    Article  CAS  PubMed  Google Scholar 

  30. Sunanaga J, Deng BS, Zhang W, Kanmura Y, Kuwaki T. CO2 activates orexin-containing neurons in mice. Respir. Physiol. Neurobiol. 2009; 166: 184–6.

    Article  CAS  PubMed  Google Scholar 

  31. Williams RH, Jensen LT, Verkhratsky A, Fugger L, Burdakov D. Control of hypothalamic orexin neurons by acid and CO2. Proc. Natl Acad. Sci. U.S.A. 2007; 104: 10685–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Machaalani R, Hunt NJ, Waters KA. Effects of changes in energy homeostasis and exposure of noxious insults on the expression of orexin (hypocretin) and its receptors in the brain. Brain Res. 2013; 1526: 102–22.

    Article  CAS  PubMed  Google Scholar 

  33. Yuan LB, Dong HL, Zhang HP et al. Neuroprotective effect of orexin-A is mediated by an increase of hypoxiainducible factor-1 activity in rat. Anesthesiology 2011; 114: 340–54.

    Article  CAS  PubMed  Google Scholar 

  34. Semenza GL, Prabhakar NR. HIF-1-dependent respiratory, cardiovascular, and redox responses to chronic intermittent hypoxia. Antioxid. Redox Signal. 2007; 9: 1391–6.

    Article  CAS  PubMed  Google Scholar 

  35. Dutschann M, Kron M, Mörschel M, Gestreau C. Activation of orexin B receptors in the pontine Kölliker-Fuse nucleus modulates pre-inspiratory hypoglossal motor activity in rat. Respir. Physiol. Neurobiol. 2007; 159: 232–5.

    Article  Google Scholar 

  36. Volgin DV, Saghir M, Kubin L. Developmental changes in the orexin 2 receptor mRNA in hypoglossal motoneurons. Neuroreport 2002; 13: 433–6.

    Article  CAS  PubMed  Google Scholar 

  37. Nakamura A, Zhang W, Yanagisawa M, Fukuda Y, Kuwaki T. Vigilance state-dependent attenuation of hypercapnic chemoreflex and exaggerated sleep apnea in orexin knockout mice. J. Appl. Physiol. 2007; 102: 241–8.

    Article  CAS  PubMed  Google Scholar 

  38. Kuwaki T. Orexinergic modulation of breathing across vigilance states. Respir. Physiol. Neurobiol. 2008; 164: 204–12.

    Article  CAS  PubMed  Google Scholar 

  39. Zhu LL, Zhao T, Li HS et al. Neurogenesis in the adult rat brain after intermittent hypoxia. Brain Res. 2005; 1055: 1–6.

    Article  CAS  PubMed  Google Scholar 

  40. Arendt DH, Ronan PJ, Oliver KD, Callahan LB, Summers TR, Summers CH. Depressive behavior and activation of the orexin/hypocretin system. Behav. Neurosci. 2013; 127: 86–94.

    Article  CAS  PubMed  Google Scholar 

  41. Li A, Hindmarch CC, Nattie EE, Paton JF. Antagonism of orxin receptors significantly lowers blood pressure in spontaneously hypertensive rats. J. Physiol. 2013; Epub ahead of print.

    Google Scholar 

  42. Tsuneki H, Wada T, Sasaoka T. Role of orexin in the central regulation of glucose and energy homeostasis. Endocr. J. 2012; 59: 365–74.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zilong Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Jiang, L., Zhu, F. et al. Chronic intermittent hypoxia and the expression of orexin and its receptors in the brains of rats. Sleep Biol. Rhythms 12, 22–29 (2014). https://doi.org/10.1111/sbr.12043

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1111/sbr.12043

Key words

Navigation