Skip to main content

Advertisement

Log in

Tumor angiogenesis and molecular target therapy in ovarian carcinomas

  • Review
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Growth of solid tumors depends on angiogenesis, the process by which new blood vessels develop from the endothelium of a pre-existing vasculature. Tumors promote angiogenesis by secreting various angiogeneic factors, and newly formed blood vessels induce tumor cell proliferation and invasiveness. Ovarian carcinomas have a poor prognosis, often associated with multifocal intraperitoneal dissemination accompanied by intense neovascularization. The degree of angiogenesis of ovarian carcinomas may directly influence the clinical course of the disease. Although a growing body of evidence indicates that angiogenic intensity may play a prognostic role in gynecological malignancies including ovarian carcinomas, the related biological mechanisms remain to be further elucidated. In this review, we describe current knowledge pertaining to mechanisms and regulation of angiogenesis in ovarian carcinomas with special reference to our recent research results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Folkman J: Clinical applications of research on angiogenesis. N Engl J Med 333: 1757–1763, 1995.

    Article  PubMed  CAS  Google Scholar 

  2. Connolly DT: Vascular permeability factor: A unique regulator of blood vessel function. J Cell Biochem 47: 219–223, 1991.

    Article  PubMed  CAS  Google Scholar 

  3. Shweiki D, Neeman M, Itin A, et al.: Induction of vascular endothelial growth factor expression by hypoxia and by glucose deficiency in multiple spheroids: implications for tumor angiogenesis. Proc Natl Acad Sci USA 92: 768–772, 1995.

    Article  PubMed  CAS  Google Scholar 

  4. Kandel J, Bassy-Wetzel E, Radvanyi F, et al.: Neovascularization is associated with a switch to the export of b-FGF in the multistep development of fibrosarcoma. Cell 66: 1095–1104, 1991.

    Article  PubMed  CAS  Google Scholar 

  5. Ohtani H, Nakamura S, Watanabe Y, et al.: Immunocytochemical localization of basic fibroblast growth factor in carcinomas and inflammatory lesions of the human digestive tract. Lab Invest 68: 520–527, 1993.

    PubMed  CAS  Google Scholar 

  6. Furukawa T, Yoshimura A, Sumizawa T, et al.: Angiogenic factor. Nature (Lond) 356: 668, 1992.

    Article  CAS  Google Scholar 

  7. Haraguchi M, Miyadera K, Uemura K, et al.: Angiogenic activity of enzymes. Nature (Lond) 368: 198, 1994.

    Article  CAS  Google Scholar 

  8. Moghaddam A, Zhang HT, Fan TPD, et al.: Thymidine phosphorylase is angiogenic and promotes tumor growth. Proc Natl Acad Sci USA 92: 998–1002, 1995.

    Article  PubMed  CAS  Google Scholar 

  9. Olofsson B, Pajusola K, Kaipainen A, et al.: Vascular endothelial growth factor B, a novel growth factor for endothelial cells. Proc Natl Acad Sci USA 93: 2576–2581, 1996.

    Article  PubMed  CAS  Google Scholar 

  10. Joukov V, Pajusola K, Kaipainen A, et al.: A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinase. EMBO J 15: 290–298, 1996.

    PubMed  CAS  Google Scholar 

  11. Achen MG, Jeltsch M, Kukk E, et al.: Vascular endothelial growth factor D (VEGF-D) is a ligand for the tyrosine kinases VEGF receptor 2 (Flk1) and VEGF receptor 3 (Flt4). Proc Natl Acad Sci USA 95: 548–53, 1998.

    Article  PubMed  CAS  Google Scholar 

  12. Parkin DM, Bray F, Ferlay J, et al.: Global cancer statistics, 2002. CA Cancer J Clin 55: 74–108, 2005.

    Article  PubMed  Google Scholar 

  13. Alvarez AA, Krigman HR, Whitaker RS, et al.: The prognostic significance of angiogenesis in epithelial ovarian carcinoma. Clin Cancer Res 5: 587–591, 1999.

    PubMed  CAS  Google Scholar 

  14. Abulafia O, Triest WE and Sherer DM: Angiogenesis in malignancies of the female genital tract. Gynecol Oncol 72: 220–231, 1999.

    Article  PubMed  CAS  Google Scholar 

  15. Kryczek I, Lange A, Mottram P, et al.: CXCL12 and vascular endothelial growth factor synergistically induce neoangiogenesis in human ovarian cancers. Cancer Res 65: 465–472, 2005.

    PubMed  CAS  Google Scholar 

  16. Liotta LA, Steeg PS and Stetler-Stevenson WG: Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell 64: 327–336, 1991.

    Article  PubMed  CAS  Google Scholar 

  17. Weidner N, Semple JP, Welch WR et al.: Tumor angiogenesis and metastasis —correlation in invasive breast carcinoma. N Engl J Med 324: 1–8, 1991.

    Article  PubMed  CAS  Google Scholar 

  18. Ueda M, Terai Y, Kumagai K, et al.: Correlation between thymidine phosphorylase expression and invasion phenotype in cervical carcinoma cells. Int J Cancer 91: 778–782, 2001.

    Article  PubMed  CAS  Google Scholar 

  19. Ueda M, Terai Y, Kumagai K, et al.: Vascular endothelial growth factor-C gene expression is closely related to invasion phenotype in gynecological tumor cells. Gynecol Oncol 82: 162–166, 2001.

    Article  PubMed  CAS  Google Scholar 

  20. Ueda M, Terai Y, Yamashita Y, et al.: Correlation between vascular endothelial growth factor-C expression and invasion phenotype in cervical carcinomas. Int J Cancer 98 335–343, 2002.

    Article  PubMed  CAS  Google Scholar 

  21. Ueda M, Hung YC, Terai Y, et al.: Vascular endothelial growth factor-C expression and invasive phenotype in ovarian carcinomas. Clin Cancer Res 11: 3225–3232, 2005.

    Article  PubMed  CAS  Google Scholar 

  22. Kanda K, Ueda M, Futakuchi H, et al.: Transcriptional expression of the genes implicated in angiogenesis and tumor invasion in cervical carcinomas. Gynecol Oncol in press, 2005.

  23. Jetsch M, Kaipainen A, Joukov V, et al.: Hyperplasia of lymphatic vessels in VEGF-C transgenic mice. Science (Washington DC) 276: 1423–1425, 1997.

    Article  Google Scholar 

  24. Yonemura Y, Endo Y, Fujita H, et al.: Role of vascular endothelial growth factor C expression in the development of lymph node metastasis in gastric cancer. Clin Cancer Res 5: 1823–1829, 1999.

    PubMed  CAS  Google Scholar 

  25. Valtola R, Salven P, Heikkila P, et al.: VEGFR-3 and its ligand VEGF-C are associated with angiogenesis in breast cancer. Am J Pathol 154: 1381–1390, 1999.

    Article  PubMed  CAS  Google Scholar 

  26. Bunone G, Vigneri P, Mariani L, et al.: Expression of angiogenesis stimulators and inhibitors in human thyroid tumors and correlation with clinical pathological features. Am J Pathol 155: 1967–1976, 1999.

    Article  PubMed  CAS  Google Scholar 

  27. Van Trappen PO, Ryan A, Carroll M, et al.: A model for co-expression pattern analysis of genes implicated in angiogenesis and tumour cell invasion in cervical cancer. Brit J Cancer 87: 537–544, 2002.

    Article  PubMed  Google Scholar 

  28. Fidler IJ and Ellis LM: The implications of angiogenesis for the biology and therapy of cancer metastasis. Cell 79: 185–188, 1994.

    Article  PubMed  CAS  Google Scholar 

  29. Hollingsworth HC, Kohn EC, Steinberg SM, et al.: Tumor angiogenesis in advanced stage ovarian carcinoma. Am J Pathol 147: 33–41, 1995.

    PubMed  CAS  Google Scholar 

  30. Abulafia O, Triest WE and Sherer DM: Angiogenesis in primary and metastatic epithelial ovarian carcinoma. Am J Obstet Gynecol 177: 541–547, 1997.

    Article  PubMed  CAS  Google Scholar 

  31. Terai Y, Ueda M, Kumagai K, et al.: Tumor angiogenesis and thymidine phosphorylase expression in ovarian carcinomas including serous surface papillary adenocarcinoma of the peritoneum. Int J Gynecol Pathol 19: 354–360, 2000.

    Article  PubMed  CAS  Google Scholar 

  32. Rosen LS: Clinical experience with angiogenesis signaling inhibitors: focus on vascular endothelial growth factor (VEGF) blockers. Cancer Control 9 (2 Suppl): 36–44, 2002.

    PubMed  Google Scholar 

  33. Abramson N, Stokes PK, Luke M, et al.: Ovarian and papillary-serous peritoneal carcinoma: pilot study with thalidomide. J Clin Oncol 20: 1147–1149, 2002.

    Article  PubMed  CAS  Google Scholar 

  34. Weng DE and Usman N: Angiozyme: a novel angiogenesis inhibitor. Curr Oncol Rep 3: 141–146, 2001.

    Article  PubMed  CAS  Google Scholar 

  35. Keyes K, Cox K, Treadway P, et al.: An in vitro tumor model: analysis of angiogenic factor expression after chemotherapy. Cancer Res 62: 5597–5602, 2002.

    PubMed  CAS  Google Scholar 

  36. Wang J, Lou P, Lesniewski R, et al.: Paclitaxel at ultra low concentrations inhibits angiogenesis without affecting cellular microtubule assembly. Anticancer Drugs 14: 13–19, 2003.

    Article  PubMed  Google Scholar 

  37. Grant DS, Williams TL, Zahaczewsky M, et al.: Comparison of antiangiogenic activities using paclitaxel (taxol) and docetaxel (taxotere). Int J Cancer 104: 121–129, 2003.

    Article  PubMed  CAS  Google Scholar 

  38. Masood R, Gordon EM, Whitley MD, et al.: Retroviral vectors bearing IgG-bindmg motifs for antibody-mediated targeting of vascular endothelial growth factor receptors. Int J Mol Med 8 335–343, 2001.

    PubMed  CAS  Google Scholar 

  39. Savontaus MJ, Sauter BV, Huang TG, et al.: Transcriptional targeting of conditionally replicating adenovirus to dividing endothelial cells. Gene Ther 9: 972–979, 2002.

    Article  PubMed  CAS  Google Scholar 

  40. Jin N, Chen W, Blazar BR et al.: Gene therapy of murine solid tumors with T cells transduced with a retroviral vascular endothelial growth factor-immunotoxin target gene. Hum Gene Ther 13: 497–508, 2002.

    Article  PubMed  CAS  Google Scholar 

  41. Miyamoto K, Morishita Y, Yamazaki M, et al.: Isolation and characterization of vascular smooth muscle cell growth promoting factor from bovine ovarian follicular fluid and its cDNA cloning from bovine and human ovary. Arch Biochem Biophys 390: 93–100, 2001.

    Article  PubMed  CAS  Google Scholar 

  42. Terai Y, Abe M, Miyamoto K, et al.: Vascular smooth muscle cell growth-promoting factor / F-spondin inhibits angiogenesis via the blockade of integrin αVβ3 on vascular endothelial cells. J Cell Physiol 188: 394–402, 2001.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masatsugu Ueda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ueda, M., Terai, Y., Kanda, K. et al. Tumor angiogenesis and molecular target therapy in ovarian carcinomas. Hum Cell 18, 1–16 (2005). https://doi.org/10.1111/j.1749-0774.2005.tb00052.x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1111/j.1749-0774.2005.tb00052.x

Key words

Navigation