Skip to main content
Log in

Determining the rigid-body inertia properties of cumbersome systems: Comparison of techniques in time and frequency domain

  • Techniques
  • Published:
Experimental Techniques Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Toivola, J., and Nuutila, O., “Comparison of three methods for determining rigid body inertia properties from Frequency Response Function,” Proceedings of IMAC XI, Kissimmee, FL, February 1–4 (1993).

  2. Ringegni, P.L., Actis, M.D., and Patanella, A.J., “An experimental technique for determining mass inertial properties of irregular shape bodies and mechanical assemblies,” Measurement 29:63–75 (2001).

    Article  Google Scholar 

  3. Storozhenko, V.A., “A technique for identification of the principal central axis of inertia in an inhomogeneous rigid body,” International Applied Mechanics 39(12):1464–1472 (2003).

    Article  Google Scholar 

  4. Pandit, S., Hu, Z.Q., and Yao, Y.X., “Experimental technique for accurate determination of rigid body characteristics,” Proceedings of IMAC X, San Diego, CA, pp. 307–311 (1992).

  5. Previati, G., Mastinu, G., Gobbi, M., Piccardi, C., Bolzoni, L., and Rinaldi, S., “A New Test Rig for Measuring the Inertia Properties of Vehicles and their Subsystems,” Proceedings of IMECE, Anaheim, CA, November 13–20 (2004).

  6. Previati, G., Gobbi, M., Pennati, M., and Mastinu, G., “Accurate measurement of mass properties of round vehicles and their subsystems,” Proceedings of the 7th International Symposium on Advanced Vehicle Control AVEC, Arnhem, The Netherlands, August 23–27 (2004).

  7. Genta, G., and Delprete, C., “Some considerations on the experimental determination of moments of inertia,” Meccanica 29:125–141 (1994).

    Article  Google Scholar 

  8. Gentile, A., Mangialardi, L., Mantriota, G., and Trentadue, A., “Measurement of the inertia tensor: an experimental proposal,” Measurements 14(3–4):241–254 (1995).

  9. Da Lio, M., and Doria, L.R., “A spatial mechanism for the measurements of the inertia tensor: theory and experimental results,” Dynamic Systems, Measurements, and Control 121:111–121 (1999).

    Article  Google Scholar 

  10. Leurs, W., Gielen, L., Brughmans, M., and Dierckx, B, Calculation of rigid body properties from FRF data: practical implementation and test case, Proceedings of IMAC XV, Tokyo, Japan (1997).

  11. Almeida, R.A.B., Urgueira, A.P.V., and Maia, N.M.M., “Identification of Rigid Body Properties from vibration measurements,” Journal of Sound and Vibration 299:884–899 (2007).

    Article  Google Scholar 

  12. Okuma, M., Heylen, W., and Sas, P., “Identification of the rigid body properties of 3-d frame structure by MCK identification method,” Proceedings of ISMA25, Leuven, Belgium, September 13–15 (2000).

  13. Okuma, M., Shi, Q., and Oho, T., “Development of the experimental spatial matrix identification method (theory and basic verification with a frame structure),” Journal of Sound and Vibration 219(1):5–22 (1999).

    Article  Google Scholar 

  14. Okubo, N., and Furukawa, T., “Measurement of Rigid Body modes for Dynamic Design,” Proceedings of IMAC II, Orlando, FL, February 6–9, pp. 545–549 (1984).

  15. Fragolent, A., and Sestieri, A., “Identification of Rigid Body Inertia Properties from Experimental Data,” Mechanical Systems and Signal Processing 10(6):697–709 (1996).

    Article  Google Scholar 

  16. Lee, H., Lee, Y., and Park, Y., “Response and excitation points selection for accurate rigid-body inertia properties Identification,” Mechanical Systems and Signal Processing 13(4):571–592 (1999).

    Article  Google Scholar 

  17. Witter, M.C., Brown, D.L., and Blough, J.R., “Measuring the six DOF driving point impedance function and an application to RB inertia property estimation,” Mechanical Systems and Signal Processing 14(1):111–124 (2000).

    Article  Google Scholar 

  18. LMS International, Advanced FRF Based Determination of Structural Inertia Properties, Leuven, Belgium, LMS Technical Report CR-07-03 (1998).

    Google Scholar 

  19. Kane, T.R., and Levinson, D.A., Dynamics: Theory and Application, McGraw-Hill Inc., ISBN: 0-07-037846-0, pp. 66–70 (1985).

  20. Lamontia, M., “On the Determination and Use of Residual Flexibilities, Inertia Restraints and Rigid Body Modes,” Proceedings of IMAC I, Orlando, FL, November 8–10, pp. 153–159 (1982).

  21. Mucchi, E., Bottoni, G., and Di Gregorio, R., “Determining the rigid-body inertia properties of a knee prosthesis by FRF measurements,” Proceedings of the IMAC XXVII, Orlando, FL, February 9–12 (2009).

  22. Peeters, B., Van der Auweraer, H., Guillaume, P., and Leuridan, J., “The PolyMAX frequency-domain method: a new standard for modal parameter estimation?” Shock and Vibration 11(3–4):395–410 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Mucchi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mucchi, E., Fiorati, S., Di Gregorio, R. et al. Determining the rigid-body inertia properties of cumbersome systems: Comparison of techniques in time and frequency domain. Exp Tech 35, 36–43 (2011). https://doi.org/10.1111/j.1747-1567.2009.00603.x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1111/j.1747-1567.2009.00603.x

Navigation