Skip to main content
Log in

Determination of KI, KII and trajectory of initial crack by adaptive finite element method and photoelastic technique

  • Techniques
  • Published:
Experimental Techniques Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Gdoutos, E.E., Theocaris, P.S., “A Photoelastic Determination of Mixed–mode Stress–intensity Factors,” Experimental Mechanics 18(3):87–96, (1978).

    Article  Google Scholar 

  2. Zhengmei, L., Ping, S., “Photoelastic Determination of Mixed–mode Stress–intensity Factors KI, KII, and KIII,” Experimental Mechanics 23(2):228–235, (1983).

    Article  Google Scholar 

  3. Patterson, E.A., Olden, E.J., “Optical Analysis of Crack Tip Stress Fields: a Comparative Study,” Fatigue & Fracture of Engineering Materials and Structures 27(7):623–635, (2004).

    Article  Google Scholar 

  4. Guagliano, M., Sangirardi, M., Vergani, L., “Photoelastic Methods to Determine KI, KII, and KIII of Internal Cracks Subjected to Mixed Mode Loading,” International Journal of Fatigue 28(5–6):576–582, (2006).

    Article  Google Scholar 

  5. Kim, J.H., Paulino, G.H., “Simulation of Crack Propagation in Functionally Graded Materials under Mixed–mode and Non–proportional Loading,” International Journal of Mechanics and Materials in Design 1(63–94):(2004).

    Article  Google Scholar 

  6. Phongthanapanich, S., Dechaumphai, P., “Adaptive Delaunay Triangulation with Object–oriented Programming for Crack Propagation Analysis,” Finite Element in Analysis and Design 40(13–14):1753–1771, (2004).

    Article  Google Scholar 

  7. Alshoaibi, A.M., Hadi, M.S.A., Ariffin, A.K., “An Adaptive Finite Element Procedure for Crack Propagation Analysis,” Journal of Zheijang University Science A 8(2):228–236 (2006).

    Article  Google Scholar 

  8. Rao, B.N., Rahman, S., “An Efficient Meshless Method for Fracture Analysis for Cracks,” Computational Mechanics 26:398–408 (2000).

    Article  Google Scholar 

  9. Luliang, L., Pan, Z., “Meshless Method for 2D Mixed–mode Crack Propagation Based on Voronoi Cell,” ACTA Mechanica Solida Sinca 16(3):231–239, (2003).

    Google Scholar 

  10. Chiuo, Y.J., Lee, Y.M., Tsay, R.J., “Mixed Mode Fracture Propagation by Manifold Method.” International Journal of Fracture 114:327–347 (2002).

    Article  Google Scholar 

  11. Xu, K., Lie, S.T., Cen, Z., “Crack Propagation Analysis with Galerkin Boundary Element Method,” International Journal for Numerical and Analytical Methods in Geomechanics 22(5):421–435, (2004).

    Article  Google Scholar 

  12. Hiroshi, T., Paul, C.P., George, R.I., The Stress Analysis of Crack Handbook, ASME Press, New York (1985).

    Google Scholar 

  13. Murakami, Y., Stress Intensity Factors, Volume 2, Pergamon Press, New York (1986).

  14. Anderson, T.L., Fracture Mechanics: fundamentals and Applications, CRC Press Boca Raton, FL (1994).

  15. Limtrakarn, W., “Stress Analysis on Crack Tip Using Q8 and Adaptive Meshes,” Thammasat International Journal of Science and Technology. 10(1):19–24 (2005).

    Google Scholar 

  16. Erdogan, F., Sih, G.C., “On the Crack Extension in Plates under Plane Loading and Transverse Shear,” Journal of Basic Engineering 85:519–527 (1963).

    Article  Google Scholar 

  17. Nuismer, R.J., “An Energy Release Rate Criterion for Mixed Mode Fracture,” International Journal of Fracture. 11(2):245–250 (1975).

    Article  Google Scholar 

  18. Sih, G.C., “Strain–energy–density Factor Applied to Mixed Mode Crack Problems,” International Journal of Fracture. 10:305–321 (1974).

    Article  Google Scholar 

  19. Zienkiewicz, O.C., Taylor, R.L., Finite Element Method, 5th Edition, Butterworth–Heinemann, Woburn (2000).

    Google Scholar 

  20. Guinea, G.V., Planas, J., Elices, M., “K Evaluation by the Displacement Extrapolation Technique.” Engineering Fracture Mechanics. 66(3):243–255, (2000).

    Article  Google Scholar 

  21. Irwin, G.R., “Discussion of the Dynamic Stress Distribution Surrounding a Running Crack–A Photoelastic Analysis,” Proceedings of the Society of Experimental Stress Analysis 16(1):93–96, (1958).

    Google Scholar 

  22. Paipetis, S.A., Holister, G.S., Photoelasticity in Engineering Practice, Elsevier Applied Science Publishers, New York (1985).

    Google Scholar 

  23. Schroedl, M.A., Smith, C.W., “Local Stress Near Deep Surface Flaws under Cylindrical Bending Fields,” ASTM STP 536:45–63 (1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Limtrakarn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Limtrakarn, W., Yodsangkham, A., Namlaow, A. et al. Determination of KI, KII and trajectory of initial crack by adaptive finite element method and photoelastic technique. Exp Tech 34, 27–35 (2010). https://doi.org/10.1111/j.1747-1567.2009.00527.x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1111/j.1747-1567.2009.00527.x

Navigation