Skip to main content
Log in

Design of A Wood’s Metal Grip in Torsion

  • Published:
Experimental Techniques Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Quay, R. and Placek, R.J., “Cyclic Fatigue of Turbine-Generator Shafts, Analysis and Control of Subsynchronous Resonance,” IEEE Power Eng. Soc., 12–21, New York (1976).

    Google Scholar 

  2. Jackson, M.C., Umans, S.D., Dunlop, R.D., Horwitz, S.H. and Parikh, A.C., “Turbine-Generator Shafts Torques and Fatigue: Part 1 - Simulation Method and Fatigue Analysis,” IEEE Trans. on Power Apparatus and Systems, PAS-98, 2299–2307 (1979).

    Article  Google Scholar 

  3. Dunlop, R.D., Horwitz, S.H., Parikh, A.C. and Jackson, M.C., “Turbine-Generator Shaft Torques and Fatigue: Part II. Impact of System Disturbance on High Speed Reclasure,” IEEE Trans. on Power Apparatus and Systems, PAS-98, 2308–2328 (1979).

    Article  Google Scholar 

  4. Ritchie, R.O., McClintock, F.A., Nayeb-Hashemi, H. and Ritter, M.A., “Mode III Fatigue Crack Propagation in Low Alloy Steel,” Met. Trans. A., 13A, 101–109 (1982).

    Article  Google Scholar 

  5. McClintock, F.A. and Ritchie, R.O., “Modeling Low-Cycle Torsional Fatigue Crack Growth Under Variable Loading,” Mechanics of Fatigue, Proc. 1981 ASME Winter Annual Mtg., Ed. T. Mura, Amer. Soc. Mech. Eng., New York (1981).

    Google Scholar 

  6. Hay, E. and Brown, M.W., “A D.C. Potential Drop Method to Monitor Crack Growth in Notches Subjected to Torsion,” Fatigue of Eng. Mat. and Struct., 4 (e), 287–290 (1981).

    Article  Google Scholar 

  7. Nayeb-Hasherni, H., McClintock, F.A. and Ritchie, R.O., “Effects of Friction and High Torques on Fatigue Crack Propagation in Mode III,” Met. Trans. A., 13A, (Dec. 1982).

  8. Nayeb-Hashemi, H., Suresh, S. and Ritchie, R.O., “On the Contrast between Mode I and Mode III Fatigue Crack Propagation Under Variable Amplitude Loading Conditions,” Mat. Sci. and Eng., 59 (1983).

  9. Ritter, M.A. and Ritchie, R.O., “On the Calibration Optimization and Use of D.C. Electric Potential Methods for Monitoring Mode III Crack Growth in Torsionally-Loaded Samples,” Fatigue of Eng. Mat. and Struct., 5 (1), 91–99 (1982).

    Article  Google Scholar 

  10. Nayeb-Hashemi, H., McClintock, F.A. and Ritchie, R.O., “Micro-Mechanical Modelling of Mode III Fatigue Crack Growth in Rotor Steels,” Int. J. Fract., 23, 163–185 (1983).

    Article  Google Scholar 

  11. Nayeb-Hashemi, H., McClintock, F.A. and Ritchie, R.O., “Influence of Overloads and Block Loading Sequences on Mode III Fatigue Crack Propagation in A469 Rotor Steel,” Eng. Fract. Mech., 18 (4), 763–783 (1983).

    Article  Google Scholar 

  12. Tada, H., Paris, P.C. and Irwin, G.R., «The Stress Analysis of Cracks Handbook,” Del. Research Corp., Hellertown, PA (1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nayeb-Hashemi, H. Design of A Wood’s Metal Grip in Torsion. Exp Tech 10, 34–37 (1986). https://doi.org/10.1111/j.1747-1567.1986.tb01425.x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1111/j.1747-1567.1986.tb01425.x

Navigation