Advertisement

Sleep and Biological Rhythms

, Volume 10, Issue 1, pp 38–45 | Cite as

Promotion of non-rapid eye movement sleep in mice after oral administration of ornithine

  • Ken Omori
  • Yoshiaki Kagami
  • Chikako Yokoyama
  • Tomoko Moriyama
  • Naomi Matsumoto
  • Mika Masaki
  • Hiroyasu Nakamura
  • Hiroshi Kamasaka
  • Koso Shiraishi
  • Takashi Kometani
  • Takashi Kuriki
  • Zhi-Li Huang
  • Yoshihiro Urade
Original Article

Abstract

We examined the effects of ornithine on the sleep-wake cycle by monitoring the electroencephalo-gram, electromyogram, and locomotor activity of freely moving mice after oral administration of it at lights-off time (18:00). Ornithine (1.0 and 3.0 g/kg of body weight) increased the amount of non-rapid eye movement (non-REM, NREM) sleep for 2 h after its administration, with a peak at 60 min post administration, to 164% and 198%, respectively, of that of the vehicle-administered mice, without changing the amount of REM sleep. The administration of ornithine at a lower dose (0.3 g/kg of body weight) did not increase the amount of NREM sleep compared with the vehicle administration. Ornithine did not affect the power spectrum density of NREM sleep but increased the number of episodes of wakefulness and NREM sleep and that of transitions between wakefulness and NREM sleep, and decreased the mean duration of wake episodes in a dose-dependent manner for 2 h after the oral administration. These results indicate that ornithine increased the amount of NREM sleep without reducing the power spectrum density of NREM sleep.

electroencephalogram mouse non-rapid eye movement sleep ornithine power spectrum analysis wakefulness 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Eisenberg DM, Davis RB, Ettner SL et al. Trends in alternative medicine use in the United States, 1990-1997: results of a follow-up national survey. JAMA 1998; 280: 1569–75.CrossRefPubMedGoogle Scholar
  2. 2.
    Gyllenhaal C, Merritt SL, Peterson SD et al. Efficacy and safety of herbal stimulants and sedatives in sleep disorders. Sleep Med. Rev. 2000; 4: 229–51.CrossRefPubMedGoogle Scholar
  3. 3.
    Meoli AL, Rosen C, Kristo D et al. Oral nonprescription treatment for insomnia: an evaluation of products with limited evidence. J. Clin. Sleep Med. 2005; 1: 173–87.Google Scholar
  4. 4.
    Tokunaga S, Takeda Y, Niimoto T et al. Effect of valerian extract preparation (BIM) on the sleep-wake in rats. Biol. Pharm. Bull. 2007 (Feb); 30 (2): 363–6.CrossRefPubMedGoogle Scholar
  5. 5.
    Makino Y, Kondo S, Nishimura Y et al. Hastatoside and verbenalin are sleep-promoting components in verbena officinalis. Sleep Biol. Rhythms 2009; 7: 211–17.CrossRefGoogle Scholar
  6. 6.
    Masaki M, Aritake K, Tanaka H et al. Crocin promotes non-rapid eye movement sleep in mice. Mol. Nutr. Food Res. 2011. doi:10.1002/mnfr.201100181.Google Scholar
  7. 7.
    Ozeki M, Juneja LR, Shirakawa S. The effects of theanine on sleep with physiological evaluation using actigraph. J. Physiol. Anthropol. 2004; 23: 58.Google Scholar
  8. 8.
    Inagawa K, Hiraoka T, Kohda T et al. Subjective effects of glycine ingestion before bedtime on sleep quality. Sleep Biol. Rhythms 2006; 4: 75–7.CrossRefGoogle Scholar
  9. 9.
    Sugino T, Shirai T, Kajimoto Y et al. L-Ornithine supple-mentation attenuates physical fatigue in healthy volun-teers by modulating lipid and amino acid metabolism. Nutr. Res. 2008; 28: 738–43.CrossRefPubMedGoogle Scholar
  10. 10.
    Hong ZY, Huang ZL, Qu WM et al. An adenosine A2A receptor agonist induces sleep by increasing GABA release in the tuberomammillary nucleus to inhibit histaminergic systems in rats. J. Neurochem. 2005; 92: 1542–49.CrossRefPubMedGoogle Scholar
  11. 11.
    Huang ZL, Mochizuki T, Qu WM et al. Altered sleep-wake characteristics and lack of arousal response to H3 receptor antagonist in histamine H1 receptor knockout mice. Proc. Natl. Acad. Sci. USA 2006; 103: 4687–92.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Kohtoh S, Taguchi Y, Matsumoto N et al. Algorithm for sleep scoring in experimental animals based on fast Fourier transform power spectrum analysis of the electroencephalogram. Sleep Biol. Rhythms 2008; 6: 163–71.CrossRefGoogle Scholar
  13. 13.
    Huang ZL, Qu WM, Eguchi N et al. Adenosine A2A, but not A1, receptors mediate the arousal effect of caffeine. Nat. Neurosci. 2005; 8: 858–9.CrossRefPubMedGoogle Scholar
  14. 14.
    Qiu MH, Qu WM, Xu XH et al. D(1)/D(2) receptor-targeting L-stepholidine, an active ingredient of the Chinese herb Stephonia, induces non-rapid eye move-ment sleep in mice. Pharmacol. Biochem. Behav. 2009; 94: 16–23.CrossRefPubMedGoogle Scholar
  15. 15.
    Hambrecht-Wiedbusch VS, Gauthier EA, Baghdoyan HA et al. Benzodiazepine receptor agonists cause drug-specific and state-specific alterations in EEG power and acetylcholine release in rat pontine reticular formation. Sleep 2010; 33: 909–18.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Bucci L, Hickson JF, Pivarnik JM et al. Ornithine ingestion and growth hormone release in bodybuilders. Nutr. Res. 1990; 10: 239–45.CrossRefGoogle Scholar
  17. 17.
    Davidson MB. Effect of growth hormone on carbohy-drate and lipid metabolism. Endocr. Rev. 1987; 8: 115–31.CrossRefPubMedGoogle Scholar
  18. 18.
    Philipp L, Brett L, Peiyuan L et al. Novel role for arginase in cell survival, regeneration, and translation in the central nervous system. J. Nutr. 2004; 134: 2812–17.Google Scholar
  19. 19.
    Hamasu K, Shigemi K, Tsuneyoshi Y et al. Intracere-broventricular injection of L-proline and D-proline induces sedative and hypnotic effects by different mechanisms under an acute stressful condition in chicks. Amino Acids 2010; 38: 57–64.CrossRefPubMedGoogle Scholar
  20. 20.
    Yamane H, Tsuneyoshi Y, Denbow DM et al. N-Methyl-D-aspartate and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors involved in the induction of sedative effects under an acute stress in neonatal chicks. Amino Acids 2009; 37: 733–9.CrossRefPubMedGoogle Scholar
  21. 21.
    Suenaga R, Yamane H, Tomonaga S et al. Central L-arginine reduced stress responses are mediated by L-ornithine in neonatal chicks. Amino Acids 2008; 35: 107–13.CrossRefPubMedGoogle Scholar
  22. 22.
    Kurauchi I, Shigemi K, Kabuki Y et al. Central L-ornithine, but not polyamines, induces a hypnotic effect in neonatal chicks under acute stress. Nutr. Neurosci. 2010; 13: 17–20.CrossRefPubMedGoogle Scholar

Copyright information

© Japanese Society of Sleep Research 2011

Authors and Affiliations

  • Ken Omori
    • 1
  • Yoshiaki Kagami
    • 1
  • Chikako Yokoyama
    • 2
  • Tomoko Moriyama
    • 2
  • Naomi Matsumoto
    • 2
  • Mika Masaki
    • 2
  • Hiroyasu Nakamura
    • 1
  • Hiroshi Kamasaka
    • 1
  • Koso Shiraishi
    • 1
  • Takashi Kometani
    • 1
  • Takashi Kuriki
    • 1
  • Zhi-Li Huang
    • 2
  • Yoshihiro Urade
    • 2
  1. 1.Institute of Health SciencesEzaki Glico Co., Ltd.OsakaJapan
  2. 2.Department of Molecular Behavioral BiologyOsaka Bioscience InstituteOsakaJapan

Personalised recommendations