Skip to main content
Log in

Melatonin protects mice with intermittent hypoxia from oxidative stress-induced pancreatic injury

  • Original Article
  • Published:
Sleep and Biological Rhythms Aims and scope Submit manuscript

Abstract

One of the most important mechanisms linking obstructive sleep apnea (OSA) to insulin resistance and type 2 diabetes involves oxidative stress. We examined whether oxidative stress-induced pancreatic injury could be reversed by the antioxidant melatonin (MEL) in male C57BL/6J mice with intermittent hypoxia(IH). Male C57BL/6J mice were randomly divided into four groups: a vehicle-treated normoxic group (CON), a melatonin-treated normoxic group (MEL), a vehicle-treated intermittent hypoxic group (IH) and a melatonin-treated intermittent hypoxic group (IH+MEL). The vehicle (2% ethanol in normal saline) or melatonin (10 mg/kg) was intraperitoneally administered daily for 2 weeks, 30 min before normoxia (intermittent air) or IH exposure. Insulin tolerance, plasma insulin levels, malondialdehyde (MDA) levels, superoxide dismutase (SOD) activity, glutathione (GSH) concentrations, b-cell apoptosis, and mRNA expression of pancreatic antioxidant enzymes glutathione peroxidase 1 (GPx1) and mitochondrial type superoxide dismutase (MnSOD) were measured in all groups. IH significantly increased the level of insulin resistance, plasma insulin content, MDA, and b-cell apoptosis when compared to the CON and MEL groups; however, SOD activity, GSH concentrations and GPx1 and MnSOD mRNA levels decreased in the IH animals. In the melatonin-treated IH mice, all of the above mentioned indices were significantly different from those in the IH mice, trending towards normal values. These results indicate that the oxidative stress induced by IH can lead to pancreatic injury, and that the injury can be partially inhibited by the antioxidant melatonin. These observations may be important to the understanding of the pathological changes noted with OSA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shaw JE, Punjabi NM, Wilding JP et al. Sleep-disordered breathing and type 2 diabetes A report from the International Diabetes Federation Taskforce on Epidemiology and Prevention. Diabetes Res. Clin. Pract. 2008; 81: 2–12.

    Article  PubMed  Google Scholar 

  2. Idris I, Hall AP, O’Reilly J et al. Obstructive sleep apnoea in patients with type 2 diabetes: aetiology and implications for clinical care. Diabetes Obes. Metab. 2009; 11: 733–41.

    Article  PubMed  Google Scholar 

  3. Tasali E, Mokhlesi B, Van Cauter E. Obstructive sleep apnea and type 2 diabetes: interacting epidemics. Chest 2008; 133: 496–506.

    Article  PubMed  Google Scholar 

  4. Larsen JJ, Hansen JM, Olsen NV et al. The effect of altitude hypoxia on glucose homeostasis in men. J. Physiol. 1997; 504: (Pt 1): 241–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Braun B, Rock PB, Zamudio S et al. Women at altitude: short-term exposure to hypoxia and/or alpha(1)-adrenergic blockade reduces insulin sensitivity. J. Appl. Physiol. 2001; 91: 623–31.

    CAS  PubMed  Google Scholar 

  6. Oltmanns KM, Gehring H, Rudolf S et al. Hypoxia causes glucose intolerance in humans. Am. J. Respir. Crit. Care Med. 2004; 169: 1231–7.

    Article  PubMed  Google Scholar 

  7. West SD, Nicoll DJ, Wallace TM et al. Effect of CPAP on insulin resistance and HbA1c in men with obstructive sleep apnoea and type 2 diabetes. Thorax 2007; 62: 969–74.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Chin K, Shimizu K, Nakamura T et al. Changes in intraabdominal visceral fat and serum leptin levels in patients with obstructive sleep apnea syndrome following nasal continuous positive airway pressure therapy. Circulation 1999; 100: 706–12.

    Article  CAS  PubMed  Google Scholar 

  9. Evans JL, Maddux BA, Goldfine ID. The molecular basis for oxidative stress-induced insulin resistance. Antioxid. Redox Signal. 2005; 7: 1040–52.

    Article  CAS  PubMed  Google Scholar 

  10. Kim JE, Kim YW, Lee IK et al. AMPactivated protein kinase activation by 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR) inhibits palmitate-induced endothelial cell apoptosis through reactive oxygen species suppression. J. Pharmacol. Sci. 2008; 106: 394–403.

    Article  CAS  PubMed  Google Scholar 

  11. Reiter RJ, Tan DX, Maldonado MD. Melatonin as an antioxidant: physiology versus pharmacology. J. Pineal Res. 2005; 39: 215–16.

    Article  CAS  PubMed  Google Scholar 

  12. Tan DX, Manchester LC, Terron MP et al. One molecule, many derivatives: a never-ending interaction of melato-nin with reactive oxygen and nitrogen species? J. Pineal Res. 2007; 42: 28–42.

    Article  CAS  PubMed  Google Scholar 

  13. El-Sokkary GH, Khidr BM, Younes HA. Role of melato-nin in reducing hypoxia-induced oxidative stress and morphological changes in the liver of male mice. Eur. J. Pharmcol. 2006; 540: 107–14.

    Article  CAS  Google Scholar 

  14. Wang WZ, Fang XH, Stephenson LL et al. Melatonin reduces ischemia/reperfusion-induced superoxide generation in arterial wall and cell death in skeletal muscle. J. Pineal Res. 2006; 41: 255–60.

    Article  CAS  PubMed  Google Scholar 

  15. Szarszoi O, Asemu G, Vanecek J et al. Effects of melato-nin on ischemia and reperfusion injury of the rat heart. Cardiovasc. Drugs Ther. 2001; 15: 251–7.

    Article  CAS  PubMed  Google Scholar 

  16. Lee EJ, Lee MY, Chen HY et al. Melatonin attenuates gray and white matter damage in a mouse model of transient focal cerebral ischemia. J. Pineal Res. 2005; 38: 42–52.

    Article  CAS  PubMed  Google Scholar 

  17. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001; 25: 402–8.

    Article  CAS  PubMed  Google Scholar 

  18. Ip MS, Lam B, Ng MM et al. Obstructive sleep apnea is independently associated with insulin resistance. Am. J. Respir. Crit. Care Med. 2002; 165: 670–6.

    Article  PubMed  Google Scholar 

  19. Punjabi NM, Sorkin JD, Katzel LI et al. Sleep-disordered breathing and insulin resistance in middle-aged and overweight men. Am. J. Respir. Crit. Care Med. 2002; 165: 677–82.

    Article  PubMed  Google Scholar 

  20. Punjabi NM, Shahar E, Redline S et al. Sleep-disordered breathing, glucose intolerance, and insulin resistance: the Sleep Heart Health Study. Am. J. Epidemiol. 2004; 160: 521–30.

    Article  PubMed  Google Scholar 

  21. Harsch IA, Schahin SP, Radespiel-Troger M et al. Continuous positive airway pressure treatment rapidly improves insulin sensitivity in patientswith obstructive sleep apnea syndrome. Am. J. Respir. Crit. Care Med. 2004; 169: 156–62.

    Article  PubMed  Google Scholar 

  22. Furukawa S, Fujita T, Shimabukuro M et al. Increased oxidative stress in obesity and its impact on metabolic syndrome. J. Clin. Invest. 2004; 114: 1752–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Laight DW, Desai KM, Gopaul NK et al. Pro-oxidant challenge in vivo provokes the onset of NIDDM in the insulin resistant obese Zucker rat. B r. J. Pharmacol. 1999; 128: 269–71.

    Article  CAS  Google Scholar 

  24. Eşrefoğlu M, Gül M, Ateş B et al. Ultrastructural clues for the protective effect of melatonin against oxidative damage in cerulein-induced pancreatitis. J. Pineal Res. 2006; 40: 92–7.

    Article  PubMed  Google Scholar 

  25. Hung MW, Tipoe GL, Poon AM et al. Protective effect of melatonin against hippocampal injury of rats with intermittent hypoxia. J. Pineal Res. 2008; 44: 214–21.

    Article  CAS  PubMed  Google Scholar 

  26. Xu J, Long YS, Gozal D et al. b-cell death and proliferation after intermittent hypoxia: role of oxidative stress. Free Radic. Biol. Med. 2009; 46: 783–90.

    Article  CAS  PubMed  Google Scholar 

  27. Bülbüller N, Dogru O, Umac H et al. The effects of melatonin and pentoxiphylline on L-arginine induced acute pancreatitis. Ulus. Travma Acil Cerrahi Derg. 2005; 11: 108–14.

    PubMed  Google Scholar 

  28. Konturek SJ, Konturek PC, Brzozowska I et al. Localization and biological activities of melatonin in intact and diseased gastrointestinal tract (GIT). J. Physiol. Pharmacol. 2007; 58: 381–405.

    CAS  PubMed  Google Scholar 

  29. Munoz-Casares FC, Padillo FJ, Briceno J et al. Melatonin reduces apoptosis and necrosis induced by ischemia/ reperfusion injury of the pancreas. J. Pineal Res. 2006; 40: 195–203.

    Article  CAS  PubMed  Google Scholar 

  30. Esparza JL, Gomez M, Rosa Nogues M et al. Melatonin reduces oxidative stress and increases gene expression in the cerebral cortex and cerebellum of aluminum-exposed rats. J. Pineal Res. 2005; 39: 129–36.

    Article  CAS  PubMed  Google Scholar 

  31. Tiedge M, Lortz S, Drinkgern J et al. Relation between antioxidant enzyme gene expression and antioxidative defense status of insulin-producing cells. Diabetes 1997; 46: 1733–42.

    Article  CAS  PubMed  Google Scholar 

  32. Lenzen S, Drinkgern J, Tiedge M. Low antioxidant enzyme gene expression in pancreatic islets compared with various other mouse tissues. Free Radic. Biol. Med. 1996; 20: 463–6.

    Article  CAS  PubMed  Google Scholar 

  33. Al-Delaimy WK, Manson JE, Willett WC et al. Snoring as arisk factor for type II diabetes mellitus: a prospective study. Am. J. Epidemiol. 2002; 155: 387–93.

    Article  PubMed  Google Scholar 

  34. Elmasry A, Janson C, Lindberg E et al. The role of habitual snoring and obesity in the development of diabetes: a 10-year follow-up study in a male population. J. Intern. Med. 2000; 248: 13–20.

    Article  CAS  PubMed  Google Scholar 

  35. Chen J, Fontes G, Saxena G et al. Lack of TXNIP protects against mitochondria-mediated apoptosis but not against fatty acid-induced ER stress-mediated beta-cell death. Diabetes 2010; 59: 440–7.

    Article  CAS  PubMed  Google Scholar 

  36. Bertuglia S, Reiter RJ. Melatonin reduces microvascular damage and insulin resistance in hamsters due to chronic intermittent hypoxia. J. Pineal Res. 2009; 46: 307–13.

    Article  CAS  PubMed  Google Scholar 

  37. Polotsky VY, Li J, Punjabi NM et al. Intermittent hypoxia increases insulin resistance in genetically obese mice. J. Physiol. 2003; 552: 253–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Kang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G., Hou, G., Lu, W. et al. Melatonin protects mice with intermittent hypoxia from oxidative stress-induced pancreatic injury. Sleep Biol. Rhythms 9, 78–85 (2011). https://doi.org/10.1111/j.1479-8425.2011.00486.x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1111/j.1479-8425.2011.00486.x

Key words

Navigation