Abstract
We recently identified neurons in the cerebral cortex that become activated during sleep episodes with high slow-wave activity (SWA). The distinctive properties of these neurons are the ability to produce nitric oxide and their long-range projections within the cortex. In this review, we discuss how these characteristics of sleep-active cells could be relevant to SWA production in the cortex. We also discuss possible models of the role of nNOS cells in SWA production.
This is a preview of subscription content, access via your institution.
References
Achermann P, Borbely AA. Dynamics of EEG slow wave activity during physiological sleep and after administration of benzodiazepine hypnotics. Hum. Neurobiol. 1987; 6: 203–10.
Borbély AA, Achermann P. Sleep homeostasis and models of sleep regulation. In: Kryger MH, Roth T, Dement WC, eds. Principles and Practice of Sleep Medicine. W.B. Saunders Co.: Philadelphia, 2000; 377–90.
Tononi G, Cirelli C. Sleep function and synaptic homeostasis. Sleep Med. Rev. 2006; 10: 49–62.
Walsh JK, Randazzo AC, Stone K et al. Tiagabine is associated with sustained attention during sleep restriction: evidence for the value of slow-wave sleep enhancement? Sleep 2006; 29: 433–43.
Huber R, Ghilardi MF, Massimini M, Tononi G. Local sleep and learning. Nature 2004; 430 (6995): 78–81.
Birtoli B, Ulrich D. Firing mode-dependent synaptic plasticity in rat neocortical pyramidal neurons. J. Neurosci. 2004; 24 (21): 4935–40.
Benington JH, Heller HC. Restoration of brain energy metabolism as the function of sleep. Prog. Neurobiol. 1995; 45: 347–60.
Dhand R, Sohal H. Good sleep, bad sleep! The role of daytime naps in healthy adults. Curr. Opin. Pulm. Med. 2006; 12: 379–82.
Tasali E, Leproult R, Ehrmann DA, Van Cauter E. Slowwave sleep and the risk of type 2 diabetes in humans. Proc. Natl. Acad. Sci. U. S. A. 2008; 105 (3): 1044–9.
Llinas R, Urbano FJ, Leznik E, Ramirez RR, van Marle HJ. Rhythmic and dysrhythmic thalamocortical dynamics: GABA systems and the edge effect. Trends. Neurosci. 2005; 28: 325–33.
Steriade M, Amzica F. Coalescence of sleep rhythms and their chronology in corticothalamic networks. Sleep Res. Online. 1998; 1 (1): 1–10.
Destexhe A, Contreras D. Neuronal computations with stochastic network states. Science 2006; 314 (5796): 85–90.
Steriade M, Dossi RC, Nunez A. Network modulation of a slow intrinsic oscillation of cat thalamocortical neurons implicated in sleep delta waves: cortically induced synchronization and brainstem cholinergic suppression. J. Neurosci. 1991; 11 (10): 3200–17.
Rey M, Bastuji H, Garcia-Larrea L, Guillemant P, Mauguiere F, Magnin M. Human thalamic and cortical activities assessed by dimension of activation and spectral edge frequency during sleep wake cycles. Sleep 2007; 30 907–12.
Magnin M, Rey M, Bastuji H, Guillemant P, Mauguiere F, Garcia-Larrea L. Thalamic deactivation at sleep onset precedes that of the cerebral cortex in humans. Proc. Natl. Acad. Sci. U. S. A. 2010; 107 (8): 3829–33.
Velly LJ, Rey MF, Bruder NJ et al. Differential dynamic of action on cortical and subcortical structures of anesthetic agents during induction of anesthesia. Anesthesiology 2007; 107: 202–12.
Steriade M, Nunez A, Amzica F. Intracellular analysis of relations between the slow (?1 Hz) neocortical oscillation and other sleep rhythms of the electroencephalogram. J. Neurosci. 1993; 13 (8): 3266–83.
Hoffman GE, Lyo D. Anatomical markers of activity in neuroendocrine systems: are we all “fosed out”? J. Neuroendocrinol. 2002; 14: 259–68.
Gerashchenko D, Wisor JP, Burns D et al. Identification of a population of sleep-active cerebral cortex neurons. Proc. Natl. Acad. Sci. U. S. A. 2008; 105 (29): 10227–32.
Pasumarthi R, Gershchenko D, Kilduff TS. Further characterization of sleep-active nNOS neurons in the mouse brain. Neuroscience 2010; 169 (1): 149–57.
Tobler I, Jaggi K. Sleep and EEG spectra in the Syrian hamster (Mesocricetus auratus) under baseline conditions and following sleep deprivation. J. Comp. Physiol. [A] 1987; 161: 449–59.
Ayers NA, Kapas L, Krueger JM. Circadian variation of nitric oxide synthase activity and cytosolic protein levels in rat brain. Brain Res. 1996; 707: 127–30.
Hilbig H, Punkt K. 24-hour rhythmicity of NADPHdiaphorase activity in the neuropil of rat visual cortex. Brain Res. Bull. 1997; 43: 337–40.
Clement P, Gharib A, Cespuglio R, Sarda N. Changes in the sleep-wake cycle architecture and cortical nitric oxide release during ageing in the rat. Neuroscience 2003; 116 (3): 863–70.
Clement P, Sarda N, Cespuglio R, Gharib A. Changes occurring in cortical NO release and brain NO-synthases during a paradoxical sleep deprivation and subsequent recovery in the rat. J. Neurochem. 2004; 90 (4): 848–56.
Cespuglio R, Debilly G, Burlet S. Cortical and pontine variations occurring in the voltammetric no signal throughout the sleep-wake cycle in the rat. Arch. Ital. Biol. 2004; 142 (4): 551–6.
Marino J, Cudeiro J. Nitric oxide-mediated cortical activation: a diffuse wake-up system. J. Neurosci. 2003; 23 (10): 4299–307.
Iadecola C. Regulation of the cerebral microcirculation during neural activity: is nitric oxide the missing link? Trends. Neurosci. 1993; 16: 206–14.
Estrada C, DeFelipe J. Nitric oxide-producing neurons in the neocortex: morphological and functional relationship with intraparenchymal microvasculature. Cereb. Cortex 1998; 8: 193–203.
Kitaura H, Uozumi N, Tohmi M et al. Roles of nitric oxide as a vasodilator in neurovascular coupling of mouse somatosensory cortex. Neurosci. Res. 2007; 59 160–71.
Kara P, Friedlander MJ. Dynamic modulation of cerebral cortex synaptic function by nitric oxide. Prog. Brain Res. 1998; 118: 183–98.
Wakatsuki H, Gomi H, Kudoh M et al. Layer-specific NO dependence of long-term potentiation and biased NO release in layer V in the rat auditory cortex. J. Physiol. 1998; 513 (Pt 1): 71–81.
O’Donnell P, Grace AA. Cortical afferents modulate striatal gap junction permeability via nitric oxide. Neuroscience 1997; 76 (1): 1–5.
Strata F, Atzori M, Molnar M, Ugolini G, Berretta N, Cherubini E. Nitric oxide sensitive depolarizationinduced hyperpolarization: a possible role for gap junctions during development. Eur. J. Neurosci. 1998; 10 (1): 397–403.
Garthwaite J. Glutamate, nitric oxide and cell-cell signalling in the nervous system. Trends. Neurosci. 1991; 14 (2): 60–7.
Stamler JS, Simon DI, Osborne JA et al. S-nitrosylation of proteins with nitric oxide: synthesis and characterization of biologically active compounds. Proc. Natl. Acad. Sci. U. S. A. 1992; 89 (1): 444–8.
Schuman EM, Madison DV. Nitric oxide and synaptic function. Annu. Rev. Neurosci. 1994; 17: 153–83.
Gally JA, Montague PR, Reeke GN Jr, Edelman GM. The NO hypothesis: possible effects of a short-lived, rapidly diffusible signal in the development and function of the nervous system. Proc. Natl. Acad. Sci. U. S. A. 1990; 87 (9): 3547–51.
Jansson A, Mazel T, Andbjer B et al. Effects of nitric oxide inhibition on the spread of biotinylated dextran and on extracellular space parameters in the neostriatum of the male rat. Neuroscience 1999; 91 (1): 69–80.
Gelperin A. Nitric oxide mediates network oscillations of olfactory interneurons in a terrestrial mollusc. Nature 1994; 369 (6475): 61–3.
Garthwaite J, Boulton CL. Nitric oxide signaling in the central nervous system. Annu. Rev. Physiol. 1995; 57 683–706.
Chen L, Majde JA, Krueger JM. Spontaneous sleep in mice with targeted disruptions of neuronal or inducible nitric oxide synthase genes. Brain Res. 2003; 973 (2): 214–22.
Aeschbach D, Cajochen C, Landolt H, Borbely AA. Homeostatic sleep regulation in habitual short sleepers and long sleepers. Am. J. Physiol. 1996; 270 (1 Pt 2): R41–R53.
Chen L, Taishi P, Majde JA, Peterfi Z, Obal F Jr, Krueger JM. The role of nitric oxide synthases in the sleep responses to tumor necrosis factor-alpha. Brain Behav. Immun. 2004; 18 (4): 390–8.
Obal FJ, Krueger JM. Biochemical regulation of nonrapid- eye-movement sleep. Front. Biosci. 2003; 8: D520–D550.
Takahashi S, Kapas L, Krueger JM. A tumor necrosis factor (TNF) receptor fragment attenuates TNF-alphaand muramyl dipeptide-induced sleep and fever in rabbits. J. Sleep Res. 1996; 5 (2): 106–14.
Takahashi S, Kapas L, Seyer JM, Wang Y, Krueger JM. Inhibition of tumor necrosis factor attenuates physiological sleep in rabbits. Neuroreport 1996; 7 (2): 642–6.
Takahashi S, Krueger JM. Inhibition of tumor necrosis factor prevents warming-induced sleep responses in rabbits. Am. J. Physiol. 1997; 272 (4 Pt 2): R1325–R1329.
Murphy M, Riedner BA, Huber R, Massimini M, Ferrarelli F, Tononi G. Source modeling sleep slow waves. Proc. Natl. Acad. Sci. U. S. A. 2009; 106 (5): 1608–13.
Mohajerani MH, McVea DA, Fingas M, Murphy TH. Mirrored bilateral slow-wave cortical activity within local circuits revealed by fast bihemispheric voltage-sensitive dye imaging in anesthetized and awake mice. J. Neurosci. 2010; 30 (10): 3745–51.
DeFelipe J, Farinas I. The pyramidal neuron of the cerebral cortex: morphological and chemical characteristics of the synaptic inputs. Prog. Neurobiol. 1992; 39 (6): 563–607.
McDonald CT, Burkhalter A. Organization of long-range inhibitory connections with rat visual cortex. J. Neurosci. 1993; 13 (2): 768–81.
Fabri M, Manzoni T. Glutamate decarboxylase immunoreactivity in corticocortical projecting neurons of rat somatic sensory cortex. Neuroscience 1996; 72 (2): 435–48.
Aroniadou-Anderjaska V, Keller A. Intrinsic inhibitory pathways in mouse barrel cortex. Neuroreport 1996; 7 (14): 2363–8.
Albus K, Wahle P. The topography of tangential inhibitory connections in the postnatally developing and mature striate cortex of the cat. Eur. J. Neurosci. 1994; 6 (5): 779–92.
Peters A, Payne BR, Josephson K. Transcallosal nonpyramidal cell projections from visual cortex in the cat. J. Comp. Neurol. 1990; 302 (1): 124–42.
Gonchar YA, Johnson PB, Weinberg RJ. GABAimmunopositive neurons in rat neocortex with contralateral projections to S-I. Brain Res. 1995; 697 (1–2): 27–34.
Kimura F, Baughman RW. GABAergic transcallosal neurons in developing rat neocortex. Eur. J. Neurosci. 1997; 9: 1137–43.
Tomioka R, Okamoto K, Furuta T et al. Demonstration of long-range GABAergic connections distributed throughout the mouse neocortex. Eur. J. Neurosci. 2005; 21 (6): 1587–600.
Higo S, Udaka N, Tamamaki N. Long-range GABAergic projection neurons in the cat neocortex. J. Comp. Neurol. 2007; 503: 421–31.
Tomioka R, Rockland KS. Long-distance corticocortical GABAergic neurons in the adult monkey white and gray matter. J. Comp. Neurol. 2007; 505: 526–38.
Volgushev M, Chauvette S, Mukovski M, Timofeev I. Precise long-range synchronization of activity and silence in neocortical neurons during slow-wave oscillations [corrected]. J. Neurosci. 2006; 26 (21): 5665–72.
Chauvette S, Volgushev M, Timofeev I. Origin of active states in local neocortical networks during slow sleep oscillation. Cereb. Cortex 2010; 20 (11): 2660–74.
Jones BE. Activity, modulation and role of basal forebrain cholinergic neurons innervating the cerebral cortex. Prog. Brain Res. 2004; 145: 157–69.
McCarley RW. Neurobiology of REM and NREM sleep. Sleep Med. 2007; 8 (4): 302–30.
Fujitani Y, Urade Y, Hayaishi O. [Sleep-promoting substances]. Nippon Ronen Igakkai Zasshi 1998; 35 (11): 811–16.
Kilduff TS, Cauli B, Gershchenko D. Activation of cortical interneurons during sleep: an anatomical link to sleep homeostasis? Trends. Neurosci. 2010 (in press).
Llinas RR, Steriade M. Bursting of thalamic neurons and states of vigilance. J. Neurophysiol. 2006; 95 (6): 3297–308.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Gerashchenko, D., Wisor, J.P. & Kilduff, T.S. Sleep-active cells in the cerebral cortex and their role in slow-wave activity. Sleep Biol. Rhythms 9 (Suppl 1), 71–77 (2011). https://doi.org/10.1111/j.1479-8425.2010.00461.x
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1111/j.1479-8425.2010.00461.x