Abstract
According to traditional belief, prolonged wakefulness during the day is followed by brain rest at night in the form of sleep. This passive theory of sleep was replaced by the active sleep genesis concept, mainly after the realization that brain activity is only slightly reduced during sleep. There is now growing evidence to suggest that sleep is auto-regulatory and that it is not necessary to attribute sleep genesis to either an active or a passive mechanism.
This is a preview of subscription content, access via your institution.
References
Villablanca J. The electroencephalogram in the permanently isolated forebrain of the cat. Science 1962; 138: 44–6.
Villablanca J. The electrocorticogram in the chronic “cerveau isole” of the cat. Electroenceph. Clin. Neuro-physiol. 1965; 19: 576–86.
Villablanca JR. Counterpointing the functional role of the forebrain and of the brainstem in the control of the sleep-waking system. J. Sleep Res. 2004; 13: 179–208.
von Economo C. Sleep as a problem of localization. J. Nerv. Ment. Dis. 1930; 71: 249–59.
Bremer F. Cerveau “isolé” et physiologie du sommeil. C. R. Soc. Biol. 1935; 118: 1235–41.
Bremer F. L’activité cérébrale au cours du sommeil et de la narcose. Contribution á l’étude du mécanisme du sommeil. Bull. Acad. Roy. Méd. Belg. 1937; 4: 68–86.
Bremer F. L’activité électrique de l’écorce cerebral etle probléme physiologique du sommeil. Boll. Soc. Ital. Biol. Sper. 1938; 13: 271–290.
Moruzzi G, Magoun HW. Brain stem reticular formation and activation of the EEG. Electroencephalogr. Clin. Neu-rophysiol. 1949; 1: 455–73.
Hess WR. Beitrage zur Physiologie d. Hirnstammes 1. Die Methodik der lokalisierten Reizung und Ausschaltung subkortikaler Hirnabschnitte. Leipzig: Georg Thième. 1932; 122.
Nauta WJH. Hypothalamic regulation of sleep in rats. An experimental study. J. Neurophysiol. 1946; 9: 285–316.
Aserinsky E, Kleitman N. Regularly occurring periods of eye motility and concomitant phenomena during sleep. Science 1953; 118: 273–4.
Dement W, Kleitman N. The relation of eye movements during sleep to dream activity: an objective method for the study of dreaming. J. Exp. Psychol. 1957; 53: 339–46.
Jouvet M, Michel F, Courjon J. Sur un stade d’activité électrique cérébrale rapide au cours du sommeil physi-ologique. C. R. Soc. Biol. 1959; 153: 1024–8.
McCarley RW, Hobson JA. Neuronal excitability modulation over the sleep cycle: a structural and mathematical model. Science 1975; 189: 58–60.
Pace-Schott EF, Hobson JA. The neurobiology of sleep: genetics, cellular physiology and subcortical networks. Nat. Rev. Neurosci. 2002; 3: 591–605.
Sakai K, Crochet S. A neural mechanism of sleep and wakefulness. Sleep Biol. Rhythms. 2003; 1: 29–42.
Saper CB, Scammell TE, Lu J. Hypothalamic regulation of sleep and circadian rhythms. Nature 2005; 437: 1257–63.
Jones BE. From waking to sleeping: neuronal and chemical substrates. Trends Pharmacol. Sci. 2005; 26: 578–86.
Fuller PM, Saper CB, Lu J. The pontine REM switch: past and present. J. Physiol. 2007; 584: 735–41.
Datta S, Maclean RR. Neurobiological mechanisms for the regulation of mammalian sleep-wake behavior: reinterpretation of historical evidence and inclusion of con-temporary cellular and molecular evidence. Neurosci. Biobehav. Rev. 2007; 31: 775–824.
Hobson JA. REM sleep and dreaming: towards a theory of protoconsciousness. Nat. Rev. Neurosci. 2009; 10: 803–13.
Siegel JM. The neurobiology of sleep. Semin. Neurol. 2009; 29: 277–96.
Berlucchi G, Moruzzi G, Salvi G, Strata P. Pupil behavior and ocular movements during synchronized and desyn-chronized sleep. Arch. Ital. Biol. 1964; 102: 230–44.
Villablanca J. La fisiología del sueño y la vigilia a la luz de estudios en gatos con traansecció n del mesencé falo. Acta. Neurol. Latinoamer. 1965; 11: 75–9.
Villablanca J. Behavioral and polygraphic study of “sleep” and “wakefulness” in chronic decerebrate cats. Electroencephalogr. Clin. Neurophysiol. 1966; 21: 562–77.
Batsel HL. Spontaneous desynchronization in the chronic cat “cerveau isolé”. Arch. Ital. Biol. 1964; 102: 547–66.
John J, Kumar VM, Gopinath G, Ramesh V, Mallick H. Changes in sleep-wakefulness after kainic acid lesion of the preoptic area in rats. Jpn. J. Physiol. 1994; 44: 231–42.
John J, Kumar VM. Effect of NMDA lesion of the medial preoptic neurons on sleep and other functions. Sleep 1998; 21: 587–98.
Lu J, Shiromani PJ, Saper CB. Effects of lesions of the ventral lateral preoptic nucleus on NREM and REM sleep. J. Neurosci. 2000; 20: 3830–40.
Ray B, Mallick HN, Kumar VM. Changes in sleep-wakefulness in the medial preoptic area lesioned rats: role of thermal preference. Behav. Brain Res. 2005; 158: 43–52.
Steriade M. The corticothalamic system in sleep. Front Biosci. 2003; 8: d878–99.
Llinás RR, Steriade M. Bursting of thalamic neurons and states of vigilance. J. Neurophysiol. 2006; 95: 3297–308.
Kristiansen K, Courtois G. Rhythmic activity from isolated cerebral cortex. Electroencephalogr. Clin. Neuro-physiol. 1949; 1: 265–72.
Rector DM, Topchiy IA, Carter KM, Rojas MJ. Local functional state differences between rat cortical columns. Brain Res. 2005; 1047: 45–55.
Walker AJ, Topchiy I, Kouptsov K, Rector DM. ERP differences during conditioned lick response in the rat. Sleep 2005; 28: A15.
Krueger JM, Rector DM, Roy S, Van Dongen HP, Belenky G, Panksepp J. Sleep as a fundamental property of neuronal assemblies. Nat. Rev. Neurosci. 2008; 9: 910–19.
Wu MN, Joiner WJ, Dean T et al. SLEEPLESS, a Ly-6/ neurotoxin family member, regulates the levels, localiza-tion and activity of Shaker. Nat. Neurosci. 2009; 13: 69–75.
Kumar VM. Neural regulation of sleep: a global phenomenon. Sleep Biol. Rhythms. 2009; 7: A35.
Cirelli C. The genetic and molecular regulation of sleep: from fruit flies to humans. Nat. Rev. Neurosci. 2009; 10: 549–60.
Villablanca J. Ocular behavior in the chronic cerveau isolé cat. Brain Res. 1966; 2: 99–102.
Crunelli V, Hughes SW. The slow (<1 Hz) rhythm of non-REM sleep: a dialogue between three cardinal oscil-lators. Nat. Neurosci. 2009; 13: 9–17.
Siegel JM. Do all animals sleep? Trends Neurosci. 2008; 31: 208–13.
Siegel JM. Sleep viewed as a state of adaptive inactivity. Nat. Rev. Neurosci. 2009; 10: 747–53.
Kumar VM, Vetrivelan R, Mallick HN. Alpha-1 adrener-gic receptors in the medial preoptic area are involved in the induction of sleep. Neurochem. Res. 2006; 31: 1095–102.
Kumar VM, Vetrivelan R, Mallick HN. Noradrenergic afferents and receptors in the medial preoptic area: neu-roanatomical and neurochemical links between the regulation of sleep and body temperature. Neurochem. Int. 2007; 50: 783–90.
Kumar VM. Body temperature and sleep: are they controlled by the same mechanism? Sleep Biol. Rhythms. 2005; 2: 103–24.
Horne JA. REM sleep — by default? Neurosci. Biobehav. Rev. 2000; 24: 777–97.
Mahowald MW, Schenck CH. Insights from studying human sleep disorders. Nature. 2005; 437: 1279–85.
Datta S, Siwek DF, Stack EC. Identification of cholinergic and non-cholinergic neurons in the pons expressing phosphorylated cyclic adenosine monophosphate response element-binding protein as a function of rapid eye movement sleep. Neuroscience. 2009; 163: 397–414.
Datta S. Cellular and chemical neuroscience of mammalian sleep. Sleep Med. 2010; 11: 431–440.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Kumar, V.M. Sleep is neither a passive nor an active phenomenon. Sleep Biol. Rhythms 8, 163–169 (2010). https://doi.org/10.1111/j.1479-8425.2010.00445.x
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1111/j.1479-8425.2010.00445.x