Skip to main content

Sleep is neither a passive nor an active phenomenon

Abstract

According to traditional belief, prolonged wakefulness during the day is followed by brain rest at night in the form of sleep. This passive theory of sleep was replaced by the active sleep genesis concept, mainly after the realization that brain activity is only slightly reduced during sleep. There is now growing evidence to suggest that sleep is auto-regulatory and that it is not necessary to attribute sleep genesis to either an active or a passive mechanism.

This is a preview of subscription content, access via your institution.

References

  1. Villablanca J. The electroencephalogram in the permanently isolated forebrain of the cat. Science 1962; 138: 44–6.

    Article  CAS  PubMed  Google Scholar 

  2. Villablanca J. The electrocorticogram in the chronic “cerveau isole” of the cat. Electroenceph. Clin. Neuro-physiol. 1965; 19: 576–86.

    Article  CAS  Google Scholar 

  3. Villablanca JR. Counterpointing the functional role of the forebrain and of the brainstem in the control of the sleep-waking system. J. Sleep Res. 2004; 13: 179–208.

    Article  PubMed  Google Scholar 

  4. von Economo C. Sleep as a problem of localization. J. Nerv. Ment. Dis. 1930; 71: 249–59.

    Article  Google Scholar 

  5. Bremer F. Cerveau “isolé” et physiologie du sommeil. C. R. Soc. Biol. 1935; 118: 1235–41.

    Google Scholar 

  6. Bremer F. L’activité cérébrale au cours du sommeil et de la narcose. Contribution á l’étude du mécanisme du sommeil. Bull. Acad. Roy. Méd. Belg. 1937; 4: 68–86.

    Google Scholar 

  7. Bremer F. L’activité électrique de l’écorce cerebral etle probléme physiologique du sommeil. Boll. Soc. Ital. Biol. Sper. 1938; 13: 271–290.

    Google Scholar 

  8. Moruzzi G, Magoun HW. Brain stem reticular formation and activation of the EEG. Electroencephalogr. Clin. Neu-rophysiol. 1949; 1: 455–73.

    Article  CAS  Google Scholar 

  9. Hess WR. Beitrage zur Physiologie d. Hirnstammes 1. Die Methodik der lokalisierten Reizung und Ausschaltung subkortikaler Hirnabschnitte. Leipzig: Georg Thième. 1932; 122.

    Google Scholar 

  10. Nauta WJH. Hypothalamic regulation of sleep in rats. An experimental study. J. Neurophysiol. 1946; 9: 285–316.

    CAS  PubMed  Google Scholar 

  11. Aserinsky E, Kleitman N. Regularly occurring periods of eye motility and concomitant phenomena during sleep. Science 1953; 118: 273–4.

    Article  CAS  PubMed  Google Scholar 

  12. Dement W, Kleitman N. The relation of eye movements during sleep to dream activity: an objective method for the study of dreaming. J. Exp. Psychol. 1957; 53: 339–46.

    Article  CAS  PubMed  Google Scholar 

  13. Jouvet M, Michel F, Courjon J. Sur un stade d’activité électrique cérébrale rapide au cours du sommeil physi-ologique. C. R. Soc. Biol. 1959; 153: 1024–8.

    CAS  Google Scholar 

  14. McCarley RW, Hobson JA. Neuronal excitability modulation over the sleep cycle: a structural and mathematical model. Science 1975; 189: 58–60.

    Article  CAS  PubMed  Google Scholar 

  15. Pace-Schott EF, Hobson JA. The neurobiology of sleep: genetics, cellular physiology and subcortical networks. Nat. Rev. Neurosci. 2002; 3: 591–605.

    Article  CAS  PubMed  Google Scholar 

  16. Sakai K, Crochet S. A neural mechanism of sleep and wakefulness. Sleep Biol. Rhythms. 2003; 1: 29–42.

    Article  Google Scholar 

  17. Saper CB, Scammell TE, Lu J. Hypothalamic regulation of sleep and circadian rhythms. Nature 2005; 437: 1257–63.

    Article  CAS  PubMed  Google Scholar 

  18. Jones BE. From waking to sleeping: neuronal and chemical substrates. Trends Pharmacol. Sci. 2005; 26: 578–86.

    Article  CAS  PubMed  Google Scholar 

  19. Fuller PM, Saper CB, Lu J. The pontine REM switch: past and present. J. Physiol. 2007; 584: 735–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Datta S, Maclean RR. Neurobiological mechanisms for the regulation of mammalian sleep-wake behavior: reinterpretation of historical evidence and inclusion of con-temporary cellular and molecular evidence. Neurosci. Biobehav. Rev. 2007; 31: 775–824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hobson JA. REM sleep and dreaming: towards a theory of protoconsciousness. Nat. Rev. Neurosci. 2009; 10: 803–13.

    CAS  PubMed  Google Scholar 

  22. Siegel JM. The neurobiology of sleep. Semin. Neurol. 2009; 29: 277–96.

    Article  PubMed  Google Scholar 

  23. Berlucchi G, Moruzzi G, Salvi G, Strata P. Pupil behavior and ocular movements during synchronized and desyn-chronized sleep. Arch. Ital. Biol. 1964; 102: 230–44.

    CAS  PubMed  Google Scholar 

  24. Villablanca J. La fisiología del sueño y la vigilia a la luz de estudios en gatos con traansecció n del mesencé falo. Acta. Neurol. Latinoamer. 1965; 11: 75–9.

    CAS  Google Scholar 

  25. Villablanca J. Behavioral and polygraphic study of “sleep” and “wakefulness” in chronic decerebrate cats. Electroencephalogr. Clin. Neurophysiol. 1966; 21: 562–77.

    Article  CAS  PubMed  Google Scholar 

  26. Batsel HL. Spontaneous desynchronization in the chronic cat “cerveau isolé”. Arch. Ital. Biol. 1964; 102: 547–66.

    CAS  PubMed  Google Scholar 

  27. John J, Kumar VM, Gopinath G, Ramesh V, Mallick H. Changes in sleep-wakefulness after kainic acid lesion of the preoptic area in rats. Jpn. J. Physiol. 1994; 44: 231–42.

    Article  CAS  PubMed  Google Scholar 

  28. John J, Kumar VM. Effect of NMDA lesion of the medial preoptic neurons on sleep and other functions. Sleep 1998; 21: 587–98.

    CAS  PubMed  Google Scholar 

  29. Lu J, Shiromani PJ, Saper CB. Effects of lesions of the ventral lateral preoptic nucleus on NREM and REM sleep. J. Neurosci. 2000; 20: 3830–40.

    CAS  PubMed  Google Scholar 

  30. Ray B, Mallick HN, Kumar VM. Changes in sleep-wakefulness in the medial preoptic area lesioned rats: role of thermal preference. Behav. Brain Res. 2005; 158: 43–52.

    Article  PubMed  Google Scholar 

  31. Steriade M. The corticothalamic system in sleep. Front Biosci. 2003; 8: d878–99.

    Article  CAS  PubMed  Google Scholar 

  32. Llinás RR, Steriade M. Bursting of thalamic neurons and states of vigilance. J. Neurophysiol. 2006; 95: 3297–308.

    Article  PubMed  Google Scholar 

  33. Kristiansen K, Courtois G. Rhythmic activity from isolated cerebral cortex. Electroencephalogr. Clin. Neuro-physiol. 1949; 1: 265–72.

    Article  CAS  Google Scholar 

  34. Rector DM, Topchiy IA, Carter KM, Rojas MJ. Local functional state differences between rat cortical columns. Brain Res. 2005; 1047: 45–55.

    Article  CAS  PubMed  Google Scholar 

  35. Walker AJ, Topchiy I, Kouptsov K, Rector DM. ERP differences during conditioned lick response in the rat. Sleep 2005; 28: A15.

    Google Scholar 

  36. Krueger JM, Rector DM, Roy S, Van Dongen HP, Belenky G, Panksepp J. Sleep as a fundamental property of neuronal assemblies. Nat. Rev. Neurosci. 2008; 9: 910–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wu MN, Joiner WJ, Dean T et al. SLEEPLESS, a Ly-6/ neurotoxin family member, regulates the levels, localiza-tion and activity of Shaker. Nat. Neurosci. 2009; 13: 69–75.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kumar VM. Neural regulation of sleep: a global phenomenon. Sleep Biol. Rhythms. 2009; 7: A35.

    Google Scholar 

  39. Cirelli C. The genetic and molecular regulation of sleep: from fruit flies to humans. Nat. Rev. Neurosci. 2009; 10: 549–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Villablanca J. Ocular behavior in the chronic cerveau isolé cat. Brain Res. 1966; 2: 99–102.

    Article  CAS  PubMed  Google Scholar 

  41. Crunelli V, Hughes SW. The slow (<1 Hz) rhythm of non-REM sleep: a dialogue between three cardinal oscil-lators. Nat. Neurosci. 2009; 13: 9–17.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Siegel JM. Do all animals sleep? Trends Neurosci. 2008; 31: 208–13.

    Article  CAS  PubMed  Google Scholar 

  43. Siegel JM. Sleep viewed as a state of adaptive inactivity. Nat. Rev. Neurosci. 2009; 10: 747–53.

    Article  CAS  PubMed  Google Scholar 

  44. Kumar VM, Vetrivelan R, Mallick HN. Alpha-1 adrener-gic receptors in the medial preoptic area are involved in the induction of sleep. Neurochem. Res. 2006; 31: 1095–102.

    Article  CAS  PubMed  Google Scholar 

  45. Kumar VM, Vetrivelan R, Mallick HN. Noradrenergic afferents and receptors in the medial preoptic area: neu-roanatomical and neurochemical links between the regulation of sleep and body temperature. Neurochem. Int. 2007; 50: 783–90.

    Article  CAS  PubMed  Google Scholar 

  46. Kumar VM. Body temperature and sleep: are they controlled by the same mechanism? Sleep Biol. Rhythms. 2005; 2: 103–24.

    Article  Google Scholar 

  47. Horne JA. REM sleep — by default? Neurosci. Biobehav. Rev. 2000; 24: 777–97.

    Article  CAS  PubMed  Google Scholar 

  48. Mahowald MW, Schenck CH. Insights from studying human sleep disorders. Nature. 2005; 437: 1279–85.

    Article  CAS  PubMed  Google Scholar 

  49. Datta S, Siwek DF, Stack EC. Identification of cholinergic and non-cholinergic neurons in the pons expressing phosphorylated cyclic adenosine monophosphate response element-binding protein as a function of rapid eye movement sleep. Neuroscience. 2009; 163: 397–414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Datta S. Cellular and chemical neuroscience of mammalian sleep. Sleep Med. 2010; 11: 431–440.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Velayudhan M. Kumar.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, V.M. Sleep is neither a passive nor an active phenomenon. Sleep Biol. Rhythms 8, 163–169 (2010). https://doi.org/10.1111/j.1479-8425.2010.00445.x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1111/j.1479-8425.2010.00445.x