Skip to main content
Log in

Restricted feeding-induced entrainment of activity rhythm and peripheral clock rhythm

  • Review Article
  • Published:
Sleep and Biological Rhythms Aims and scope Submit manuscript

Abstract

Daily restricted feeding entrains the circadian rhythm of mouse clock gene expression in the central nervous system excluding the suprachiasmatic nucleus, as well as in the peripheral tissues such as the liver, lungs, and heart. In addition to entrainment of the clock gene, daily restricted feeding induces a locomotor activity increase 2–3 h before the restricted feeding time. The increase of activity is called the food anticipatory activity (FAA). At present, the mechanisms for restricted feeding-induced entrainment are still unknown. In this review, we describe the role of the central nervous system and peripheral tissues in FAA performance and also in entrainment of clock gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cone RD, Cowley MA, Butler AA, Fan W, Marks DL, Low MJ. The arcuate nucleus as a conduit for diverse signals relevant to energy homeostasis. Int. J. Obes. Relat. Metab. Disord. 2001; 5: S63–7.

    Article  Google Scholar 

  2. Rodgers RJ, Ishii Y, Halford JC, Blundell JE. Orexins and appetite regulation. Neuropeptides 2002; 36: 303–25.

    Article  CAS  PubMed  Google Scholar 

  3. Saper CB, Lu J, Chou TC, Gooley J. The hypothalamic integrator for circadian rhythms. Trends Neurosci. 2005; 28: 152–7.

    Article  CAS  PubMed  Google Scholar 

  4. Saper CB, Scammell TE, Lu J. Hypothalamic regulation of sleep and circadian rhythms. Nature 2005; 437: 1257–63.

    Article  CAS  PubMed  Google Scholar 

  5. Ribeiro AC, Sawa E, Carren-LeSauter I, LeSauter J, Silver R, Pfaff DW. Two forces for arousal: pitting hunger versus circadian influences and identifying neurons responsible for changes in behavioral arousal. Proc. Natl. Acad. Sci. USA 2007; 104: 20078–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gooley JJ, Schomer A, Saper CB. The dorsomedial hypothalamic nucleus is critical for the expression of food-entrainable circadian rhythms. Nat. Neurosci. 2006; 9: 398–407.

    Article  CAS  PubMed  Google Scholar 

  7. Castillo MR, Hochstetler KJ, Tavernier RJ Jr, Greene DM, Bult-Ito A. Entrainment of the master circadian clock by scheduled feeding. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2004; 287: R551–5.

    Article  CAS  PubMed  Google Scholar 

  8. Damiola F, Le Minh N, Preitner N, Kornmann B, Fleury-Olela F, Schibler U. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes. Dev. 2000; 14: 2950–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Stokkan KA, Yamazaki S, Tei H, Sakaki Y, Menaker M. Entrainment of the circadian clock in the liver by feeding. Science 2001; 291: 490–3.

    Article  CAS  PubMed  Google Scholar 

  10. Hara R, Wan K, Wakamatsu H et al. Restricted feeding entrains liver clock without participation of the supra-chiasmatic nucleus. Genes Cells 2001; 6: 269–78.

    Article  CAS  PubMed  Google Scholar 

  11. Wakamatsu H, Yoshinobu Y, Aida R, Moriya T, Akiyama M, Shibata S. Restricted-feeding-induced anticipatory activity rhythm is associated with a phase-shift of the expression of mPer1 and mPer2 mRNA in the cerebral cortex and hippocampus but not in the suprachiasmatic nucleus of mice. Eur. J. Neurosci. 2001; 13: 1190–6.

    Article  CAS  PubMed  Google Scholar 

  12. Moriya T, Aida R, Kudo T et al. The dorsomedial hypo-thalamic nucleus is not necessary for food-anticipatory circadian rhythms of behavior, temperature or clock gene expression in mice. Eur. J. Neurosci. 2009; 29: 1447–60.

    Article  PubMed  Google Scholar 

  13. Mieda M, Williams SC, Richardson JA, Tanaka K, Yanagisawa M. The dorsomedial hypothalamic nucleus as a putative food-entrainable circadian pacemaker. Proc. Natl. Acad. Sci. USA 2006; 103: 12150–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Landry GJ, Simon MM, Webb IC, Mistlberger RE. Persistence of a behavioral food-anticipatory circadian rhythm following dorsomedial hypothalamic ablation in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2006; 290: R1527–34.

    Article  CAS  PubMed  Google Scholar 

  15. Landry GJ, Yamakawa GR, Webb IC, Mear RJ, Mistlberger RE. The dorsomedial hypothalamic nucleus is not necessary for the expression of circadian food-anticipatory activity in rats. J. Biol. Rhythms 2007; 22: 467–78.

    Article  PubMed  Google Scholar 

  16. Tahara Y, Hirao A, Moriya T, Kudo T, Shibata S. Effects of medial hypothalamic lesions on feeding-induced entrainment of locomotor activity and liver Per2 expression in Per2:luc mice. J. Biol. Rhythms 2010; in press.

    Google Scholar 

  17. Verwey M, Khoja Z, Stewart J, Amir S. Differential regulation of the expression of Period2 protein in the limbic forebrain and dorsomedial hypothalamus by daily limited access to highly palatable food in food-deprived and free-fed rats. Neuroscience 2007; 147: 277–85.

    Article  CAS  PubMed  Google Scholar 

  18. Waddington Lamont E, Harbour VL, Barry-Shaw J et al. Restricted access to food, but not sucrose, saccharine, or salt, synchronizes the expression of Period2 protein in the limbic forebrain. Neuroscience 2007; 144: 402–11.

    Article  CAS  PubMed  Google Scholar 

  19. Amir S, Stewart J. Motivational modulation of rhythms of the expression of the clock protein PER2 in the limbic forebrain. Biol. Psychiatry 2009; 65: 829–34.

    Article  CAS  PubMed  Google Scholar 

  20. Mendoza J, Angeles-Castellanos M, Escobar C. A daily palatable meal without food deprivation entrains the suprachiasmatic nucleus of rats. Eur. J. Neurosci. 2005; 22: 2855–62.

    Article  PubMed  Google Scholar 

  21. Mistlberger RE. Circadian food-anticipatory activity: formal models and physiological mechanisms. Neurosci. Biobehav. Rev. 1994; 8: 171–95.

    Article  Google Scholar 

  22. LeSauter J, Hoque N, Weintraub M, Pfaff DW, Silver R. Stomach ghrelin-secreting cells as food-entrainable circadian clocks. Proc. Natl. Acad. Sci. USA 2009; 106: 13582–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Davidson AJ, Cappendijk SL, Stephan FK. Feeding-entrained circadian rhythms are attenuated by lesions of the parabrachial region in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2000; 278: R1296–304.

    CAS  PubMed  Google Scholar 

  24. Nakahara K, Fukui K, Murakami N. Involvement of thalamic paraventricular nucleus in the anticipatory reaction under food restriction in the rat. J. Vet. Med. Sci. 2004; 66: 1297–300.

    Article  PubMed  Google Scholar 

  25. Feillet CA, Ripperger JA, Magnone MC, Dulloo A, Albrecht U, Challet E. Lack of food anticipation in Per2 mutant mice. Curr. Biol. 2006; 16: 2016–22.

    Article  CAS  PubMed  Google Scholar 

  26. Fuller PM, Lu J, Saper CB. Differential rescue of light-and food-entrainable circadian rhythms. Science 2008; 320: 1074–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Iijima M, Yamaguchi S, van der Horst GT, Bonnefont X, Okamura H, Shibata S. Altered food-anticipatory activity rhythm in Cryptochrome-deficient mice. Neurosci. Res. 2005; 52: 166–73.

    Article  CAS  PubMed  Google Scholar 

  28. Mistlberger RE, Yamazaki S, Pendergast JS, Landry GJ, Takumi T, Nakamura W. Comment on “Differential rescue of light-and food-entrainable circadian rhythms”. Science 2008; 322: 675.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Storch KF, Weitz CJ. Daily rhythms of food-anticipatory behavioral activity do not require the known circadian clock. Proc. Natl. Acad. Sci. USA 2009; 106: 6808–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Moriya T, Horikawa K, Akiyama M, Shibata S. Correlative association between N-methyl-D-aspartate receptor-mediated expression of period genes in the suprachiasmatic nucleus and phase shifts in behavior with photic entrainment of clock in hamsters. Mol. Pharmacol. 2000; 58: 1554–62.

    CAS  PubMed  Google Scholar 

  31. Ono M, Shibata S, Minamoto Y, Watanabe S. Effect of the noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist MK-801 on food-anticipatory activity rhythm in the rat. Physiol. Behav. 1996; 59: 585–9.

    Article  CAS  PubMed  Google Scholar 

  32. Nikaido T, Akiyama M, Moriya T, Shibata S. Sensitized increase of period gene expression in the mouse caudate/ putamen caused by repeated injection of methamphetamine. Mol. Pharmacol. 2001; 59: 894–900.

    CAS  PubMed  Google Scholar 

  33. Iijima M, Nikaido T, Akiyama M, Moriya T, Shibata S. Methamphetamine-induced, suprachiasmatic nucleus-independent circadian rhythms of activity and mPer gene expression in the striatum of the mouse. Eur. J. Neurosci. 2002; 16: 921–9.

    Article  PubMed  Google Scholar 

  34. Akiyama M, Yuasa T, Hayasaka N, Horikawa K, Sakurai T, Shibata S. Reduced food anticipatory activity in genetically orexin (hypocretin) neuron-ablated mice. Eur. J. Neurosci. 2004; 20: 3054–62.

    Article  PubMed  Google Scholar 

  35. Mieda M, Williams SC, Sinton CM, Richardson JA, Sakurai T, Yanagisawa M. Orexin neurons function in an efferent pathway of a food-entrainable circadian oscillator in eliciting food-anticipatory activity and wakefulness. J. Neurosci. 2004; 24: 10493–501.

    Article  CAS  PubMed  Google Scholar 

  36. Kaur S, Thankachan S, Begum S et al. Entrainment of temperature and activity rhythms to restricted feeding in orexin knock out mice. Brain Res. 2008; 1205: 47–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shibata S, Minamoto Y, Ono M, Watanabe S. Age-related impairment of food anticipatory locomotor activity in rats. Physiol. Behav. 1994; 55: 875–8.

    Article  CAS  PubMed  Google Scholar 

  38. Walcott EC, Tate BA. Entrainment of aged, dysrhythmic rats to a restricted feeding schedule. Physiol. Behav. 1996; 60: 1205–8.

    Article  CAS  PubMed  Google Scholar 

  39. Shibata S, Ono M, Minamoto Y, Watanabe S. Attenuating effect of bifemelane on an impairment of mealtime-associated activity rhythm in aged and MK-801-treated rats. Pharmacol. Biochem. Behav. 1995; 50: 207–10.

    Article  CAS  PubMed  Google Scholar 

  40. Tanaka Y, Kurasawa M, Nakamura K. Recovery of diminished mealtime-associated anticipatory behavior by aniracetam in aged rats. Pharmacol. Biochem. Behav. 2000; 66: 827–33.

    Article  CAS  PubMed  Google Scholar 

  41. Hirota T, Okano T, Kokame K et al. Glucose down-regulates Per1 and Per2 mRNA levels and induces circadian gene expression in cultured Rat-1 fibroblasts. J. Biol. Chem. 2002; 277: 44244–51.

    Article  CAS  PubMed  Google Scholar 

  42. Kawamoto T, Noshiro M, Furukawa M et al. Effects of fasting and re-feeding on the expression of Dec1, Per1, and other clock-related genes. J. Biochem. 2006; 140: 401–8.

    Article  CAS  PubMed  Google Scholar 

  43. Kobayashi H, Oishi K, Hanai S, Ishida N. Effect of feeding on peripheral circadian rhythms and behaviour in mammals. Genes Cells 2004; 9: 857–64.

    Article  CAS  PubMed  Google Scholar 

  44. Buijs RM, Kalsbeek A. Hypothalamic integration of central and peripheral clocks. Nat. Rev. Neurosci. 2001; 2: 521–6.

    Article  CAS  PubMed  Google Scholar 

  45. Guo H, Brewer JM, Champhekar A, Harris RB, Bittman EL. Differential control of peripheral circadian rhythms by suprachiasmatic-dependent neural signals. Proc. Natl. Acad. Sci. USA 2005; 102: 3111–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Balsalobre A, Brown SA, Marcacci L et al. Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science 2000; 289: 2344–7.

    Article  CAS  PubMed  Google Scholar 

  47. Terazono H, Mutoh T, Yamaguchi S et al. Adrenergic regulation of clock gene expression in mouse liver. Proc. Natl. Acad. Sci. USA 2003; 100: 6795–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chou TC, Scammell TE, Gooley JJ, Gaus SE, Saper CB, Lu J. Critical role of dorsomedial hypothalamic nucleus in a wide range of behavioral circadian rhythms. J. Neurosci. 2003; 23: 10691–702.

    CAS  PubMed  Google Scholar 

  49. Cailotto C, La Fleur SE, Van Heijningen C et al. The suprachiasmatic nucleus controls the daily variation of plasma glucose via the autonomic output to the liver: are the clock genes involved? Eur. J. Neurosci. 2005; 22: 2531–40.

    Article  PubMed  Google Scholar 

  50. Kobayashi H, Oishi K, Hanai S et al. Effect of feeding on peripheral circadian rhythms and behaviour in mammals. Genes Cells 2004; 9: 857–64.

    Article  CAS  PubMed  Google Scholar 

  51. Davidson AJ, Poole AS, Yamazaki S, Menaker M. Is the food-entrainable circadian oscillator in the digestive system? Genes Brain Behav. 2003; 2: 32–9.

    Article  CAS  PubMed  Google Scholar 

  52. Hirao A, Tahara Y, Kimura I, Shibata S. A balanced diet is necessary for proper entrainment signals of the mouse liver clock. PLoS One 2009; 4: e6909.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Stephan FK. Calories affect zeitgeber properties of the feeding entrained circadian oscillator. Physiol. Behav. 1997; 62: 995–1002.

    Article  CAS  PubMed  Google Scholar 

  54. Le Minh N, Damiola F, Tronche F, Schütz G, Schibler U. Glucocorticoid hormones inhibit food-induced phase-shifting of peripheral circadian oscillators. EMBO J. 2001; 20: 7128–36.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Young ME, Wilson CR, Razeghi P, Guthrie PH, Taegtmeyer H. Alterations of the circadian clock in the heart by streptozotocin-induced diabetes. J. Mol. Cell. Cardiol. 2002; 4: 223–31.

    Article  Google Scholar 

  56. Stephan FK, Davidson AJ. Glucose, but not fat, phase shifts the feeding-entrained circadian clock. Physiol. Behav. 1998; 65: 277–88.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigenobu Shibata.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shibata, S., Hirao, A. & Tahara, Y. Restricted feeding-induced entrainment of activity rhythm and peripheral clock rhythm. Sleep Biol. Rhythms 8, 18–27 (2010). https://doi.org/10.1111/j.1479-8425.2009.00417.x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1111/j.1479-8425.2009.00417.x

Key words

Navigation