Skip to main content
Log in

Synaptic organization of the olfactory bulb based on chemical coding of neurons

  • Review Article
  • Published:
Anatomical Science International Aims and scope Submit manuscript

Abstract

Olfaction is one of the chemical senses in both vertebrate and invertebrate animals essential for a variety of social behaviors. Recent molecular biological and physiological studies using optical recording have indicated elaborate mechanisms in the main olfactory bulb for processing input from olfactory receptor neurons and control of output to higher centers in the brain. The current challenge is to identify a structural basis for understanding such elaborate molecular and functional organization. Immunocytochemistry and other advanced technologies have enabled us to label bulbar neurons selectively, and they have shown that the olfactory bulb has much greater heterogeneity in chemical and structural neuronal organization and in synaptic connectivity than previously believed. This review describes the structural aspects of the main olfactory bulb of rats and summarizes the findings for its synaptic organization based on chemical coding of neurons. Current uncertainties and issues that need to be clarified in the future are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baimbridge KG, Miller JJ (1982) Immunohistochemical localization of calcium-binding protein in the cerebellum, hippocampal formation and olfactory bulb of the rat. Brain Res 245, 223–9.

    Article  PubMed  CAS  Google Scholar 

  • Bogan N, Brecha N, Gall C, Karten HJ (1982) Distribution of enkephalin-like immunoreactivity in the rat main olfactory bulb. Neuroscience 7, 895–906.

    Article  PubMed  CAS  Google Scholar 

  • Brinon JG, Alonso JR, Arevalo R, Garacia-Ojeda E, Lara J, Aijon J (1992) Calbindin D-28k-positive neurons in the rat olfactory bulb. An immunohistochemical study. Cell Tissue Res 269, 289–97.

    Article  PubMed  CAS  Google Scholar 

  • Brinon JG, Martinez-Guijarro FJ, Bravo IG et al. (1999) Coexpression of neurocalcin with other calcium-binding proteins in the rat main olfactory bulb. J Comp Neurol 407, 404–14.

    Article  PubMed  CAS  Google Scholar 

  • Buck L, Axel R (1991) A novel multigene family may encode odorant receptors: A molecular basis for odor recognition. Cell 65, 175–87.

    Article  PubMed  CAS  Google Scholar 

  • Celio MR (1990) Calbindin D-28k and parvalbumin in the rat nervous system. Neuroscience 35, 375–475.

    Article  PubMed  CAS  Google Scholar 

  • Davis BJ, Macrides F (1983) Tyrosine hydroxylase immunoreactive neurons and fibers in the olfactory system of the hamster. J Comp Neurol 214, 427–40.

    Article  Google Scholar 

  • Davis BJ, Burd GD, Macrides F (1982) Localization of methonine-enkephalin, substance P, and somatostatin immunoreactivities in the main olfactory bulb of the hamster. J Comp Neurol 204, 377–83.

    Article  PubMed  CAS  Google Scholar 

  • Friedrich RW, Korsching SI (1997) Combinational and chemotopic odorant coding in the zebrafish olfactory bulb visualized by optical imaging. Neuron 18, 737–52.

    Article  PubMed  CAS  Google Scholar 

  • Gall CM, Hendry SHC, Seroogy KB, Jones EG, Haycock JW (1987) Evidence for coexistence of GABA and dopamine in neurons of the rat olfactory bulb. J Comp Neurol 266, 307–18.

    Article  PubMed  CAS  Google Scholar 

  • Halasz N (1990) The Vertebrate Olfactory System: Chemical Neuroanatomy, Function and Development. Akademiai Kiado, Budapest.

    Google Scholar 

  • Halasz N, Hokfelt T, Norman AW, Goldstein M (1985) Tyrosine hydroxylase and 28K-Vitamin D-dependent calcium binding protein are localized in different subpopulations of periglomerular cells of the rat olfactory bulb. Neurosci Lett 61, 103–7.

    Article  PubMed  CAS  Google Scholar 

  • Halasz N, Ljungdahl A, Hokfelt T et al. (1977) Transmitter histochemistry of the rat olfactory bulb. I. Immunohistochemical localization of monoamine synthesizing enzymes. Support for intrabulbar, periglomerular dopamine neurons. Brain Res 126, 455–74.

    Article  PubMed  CAS  Google Scholar 

  • Hayar A, Karnup S, Shipley MT, Ennis M (2004a) Olfactory bulb glomeruli: External tufted cells intrinsically burst at theta frequency and are entrained by patterned olfactory input. J Neurosci 24, 1190–9.

    Article  PubMed  CAS  Google Scholar 

  • Hayar A, Karnup S, Ennis M, Shipley MT (2004b) External tufted cells: A major excitatory element that coordinates glomerular activity. J Neurosci 24, 6676–85.

    Article  PubMed  CAS  Google Scholar 

  • Hayar A, Shipley MT, Ennis M (2005) Olfactory bulb external tufted cells are synchronized by multiple intraglomerular mechanisms. J Neurosci 25, 8197–208.

    Article  PubMed  CAS  Google Scholar 

  • Hirata Y (1964) Some observations on the fine structure of the synapses in the olfactory bulb of the mouse, with special reference to the atypical synaptic configurations. Arch Histol Jpn 24, 2893–302.

    Google Scholar 

  • Jacobowitz DM, Winsky L (1991) Immunocytochemical localization of calretinin in the forebrain of the rat. J Comp Neurol 304, 198–218.

    Article  PubMed  CAS  Google Scholar 

  • Karnup SV, Hayar A, Shipley MT, Kurnikova MG (2006) Spontaneous field potentials in the glomeruli of the olfactory bulb: The leading role of juxtaglomerular cells. Neuroscience 142, 203–21.

    Article  PubMed  CAS  Google Scholar 

  • Kasowski HJ, Kim H, Greer CA (1999) Compartmental organization of the olfactory bulb glomerulus. J Comp Neurol 407, 261–73.

    Article  PubMed  CAS  Google Scholar 

  • Kishi K, Mori K, Ojima H (1984) Distribution of local collaterals of mitral, displaced mitral, and tufted cells in the rabbit olfactory bulb. J Comp Neurol 225, 511–26.

    Article  PubMed  CAS  Google Scholar 

  • Kishi K, Mori K, Tazawa Y (1982) Three dimensional analysis of dendritic trees of mitral cells in the rabbit olfactory bulb. Neurosci Let 28, 127–32.

    Article  CAS  Google Scholar 

  • Kiyokage E, Toida K, S-Yamamoto T, Ishimura K (2005) Localization of 5alpha-reductase type 1 in the rat main olfactory bulb. J Comp Neurol 493, 381–95.

    Article  PubMed  CAS  Google Scholar 

  • Kosaka K, Kosaka T (2005) Synaptic organization of the glomerulus in the main olfactory bulb: Compartments of the glomerulus and heterogeneity of the periglomerular cells. Anat Sci Int 80, 80–90.

    Article  PubMed  Google Scholar 

  • Kosaka K, Kosaka T (2007) Chemical properties of type 1 and type 2 periglomerular cells in the mouse olfactory bulb are different from those in the rat olfactory bulb. Brain Res 1167, 42–55.

    Article  PubMed  CAS  Google Scholar 

  • Kosaka K, Aika Y, Toida K, Kosaka T (2001) Structure of intraglomerular dendritic tufts of mitral cells and their contacts with olfactory nerve terminals and calbindin-immunoreactive type 1 periglomerular neurons. J Comp Neurol 440, 219–35.

    Article  PubMed  CAS  Google Scholar 

  • Kosaka K, Aika Y, Toida K et al. (1995) Chemically defined neuron groups and their subpopulations in the glomerular layer of the rat main olfactory bulb. Neurosci Res 23, 73–88.

    PubMed  CAS  Google Scholar 

  • Kosaka K, Hama K, Nagatsu I, Wu JY, Kosaka T (1988) Possible coexistence of amino acid (γ-aminobutyric acid), amine (dopamine) and peptide (substance P); neurons containing immunoreactivities for glutamic acid decarboxylase, tyrosine hydroxylase and substance P in the hamster main olfactory bulb. Exp Brain Res 71, 633–42.

    Article  PubMed  CAS  Google Scholar 

  • Kosaka K, Hama K, Nagatsu I et al. (1987) Postnatal development of neurons containing both catecholaminergic and GABAergic traits in the rat main olfactory bulb. Brain Res 403, 355–60.

    Article  PubMed  CAS  Google Scholar 

  • Kosaka K, Heizmann CW, Kosaka T (1994) Calcium-binding protein parvalbumin immunoreactive neurons in the rat olfactory bulb I. Distribution and structural features in adult rat. Exp Brain Res 99, 191–204.

    Article  PubMed  CAS  Google Scholar 

  • Kosaka K, Toida K, Aika Y, Kosaka T (1998) How simple is the organization of the olfactory glomerulus?: The heterogeneity of so-called periglomerular cells. Neurosci Res 30, 101–10.

    Article  PubMed  CAS  Google Scholar 

  • Kosaka K, Toida K, Margolis FL, Kosaka T (1997) Chemically defined neuron groups and their subpopulations in the glomerular layer of the rat main olfactory bulb II. Prominent differences in the intraglomerular dendritic arborization and their relationship to olfactory nerve terminals. Neuroscience 76, 775–86.

    Article  PubMed  CAS  Google Scholar 

  • Kosaka T, Kosaka K (2003) Neuronal gap junctions in the rat main olfactory bulb, with special reference to intraglomerular gap junctions. Neurosci Res 45, 189–209.

    Article  PubMed  CAS  Google Scholar 

  • Kosaka T, Kosaka K (2004) Neuronal gap junctions between intraglomerular mitral/tufted cell dendrites in the mouse main olfactory bulb. Neurosci Res 49, 373–8.

    Article  PubMed  Google Scholar 

  • Kosaka T, Hataguchi Y, Hama K, Nagatsu I, Wu JY (1985) Coexistence of immunoreactivities for glutamate decarboxylase and tyrosine hydroxylase in some neurons in the periglomerular region of the rat main olfactory bulb: Possible coexistence of gamma-aminobutyric acid (GABA) and dopamine. Brain Res 343, 166–71.

    Article  PubMed  CAS  Google Scholar 

  • Kosaka T, Kosaka K, Hama K, Wu JY, Nagatsu I (1987c) Differential effect of functional olfactory deprivation on the GABAergic and catecholaminergic traits in the rat main olfactory bulb. Brain Res 413, 197–203.

    Article  PubMed  CAS  Google Scholar 

  • Kosaka T, Kosaka K, Hataguchi Y et al. (1987a) Catecholaminergic neurons containing GABA-like and: Or glutamic acid decarboxylase-like immunoreactivities in various brain regions of the rat. Exp Brain Res 66, 191–210.

    Article  PubMed  CAS  Google Scholar 

  • Kosaka T, Kosaka K, Heizmann CW et al. (1987b) An aspect of the organization of the GABAergic system in the rat main olfactory bulb: Laminar distribution of immunohistochemically defined subpopulations of GABAergic neurons. Brain Res 411, 373–8.

    Article  PubMed  CAS  Google Scholar 

  • Macrides F, Schneider SP (1982) Laminar organization of mitral and tufted cells in the main olfactory bulb of the adult hamster. J Comp Neurol 208, 419–30.

    Article  PubMed  CAS  Google Scholar 

  • Macrides F, Schoenfeld TA, Marchand JE, Clancy AN (1985) Evidence for morphologically and functionally heterogeneous classes of mitral and tufted cells in the olfactory bulb. Chem Senses 10, 175–202.

    Article  Google Scholar 

  • McLean JH, Shipley MT (1987) Serotonergic afferents to the rat olfactory bulb. I. Origins and laminar specificity of serotonergic inputs in the adult rat. J Neurosci 7, 3016–28.

    PubMed  CAS  Google Scholar 

  • McLean JH, Shipley MT (1988) Postmitotic, postmigrational expression of tyrosine hydroxylase in olfactory bulb dopaminergic neurons. J Neurosci 8, 3658–69.

    PubMed  CAS  Google Scholar 

  • Mombaerts P (2004) Odorant receptor gene choice in olfactory sensory neurons: The one receptor-one neuron hypothesis revisited. Curr Opin Neurobiol 14, 31–6.

    Article  PubMed  CAS  Google Scholar 

  • Mori K, Kishi K, Ojima H (1983) Distribution of dendrite of mitral, displaced mitral, tufted and granule cells in the rabbit olfactory bulb. J Comp Neurol 219, 339–55.

    Article  PubMed  CAS  Google Scholar 

  • Mori K, Takahashi YK, Igarashi KM, Yamaguchi M (2006) Maps of odorant molecular features in the mammalian olfactory bulb. Physiol Rev 86, 409–33.

    Article  PubMed  CAS  Google Scholar 

  • Mori K, Yoshihara Y (1995) Molecular recognition and olfactory processing in the mammalian olfactory system. Prog Neurobiol 45, 585–620.

    Article  PubMed  CAS  Google Scholar 

  • Mugnaini E, Oertel WH, Wouterlood FG (1984) Immunocytochemical localization of GABAergic neurons and dopaminergic neurons in the rat main and accessory olfactory bulbs. Neurosci Lett 47, 221–6.

    Article  PubMed  CAS  Google Scholar 

  • Nadi NS, Head R, Grillo M, Hempstead J, Grannot-Reisfeld N, Margolis FL (1981) Chemical deafferentiation of the olfactory bulb: Plasticity of the levels of the tyrosine hydroxylase, dopamine, and norepinepherine. Brain Res 213, 365–77.

    Article  PubMed  CAS  Google Scholar 

  • Parrish-Aungst S, Shipley MT, Erdelyi F, Szabo G, Puche AC (2007) Quantitative analysis of neuronal diversity in the mouse olfactory bulb. J Comp Neurol 501, 825–36.

    Article  PubMed  CAS  Google Scholar 

  • Pinching AJ, Powell TPS (1971a) The neuron types of the glomerular layer of the olfactory bulb. J Cell Sci 9, 305–45.

    PubMed  CAS  Google Scholar 

  • Pinching AJ, Powell TPS (1971b) The neuropil of the glomeruli of the olfactory bulb. J Cell Sci 9, 347–77.

    PubMed  CAS  Google Scholar 

  • Price JL, Powell TPS (1970a) The synaptology of the granule cells of the olfactory bulb. J Cell Sci 7, 125–55.

    PubMed  CAS  Google Scholar 

  • Price JL, Powell TPS (1970b) The mitral and short axon cells of the olfactory bulb. J Cell Sci 7, 631–51.

    PubMed  CAS  Google Scholar 

  • Ramon y Cajal S (1911) Histology of the Nervous System vol. II. Translated by Swanson N & Swanson LW (1995). Oxford, New York, 532–54.

    Google Scholar 

  • Ribak CE, Vaughn JE, Saito K, Barber R, Roberts E (1977) Glutamate decarboxylase localization in neurons of the olfactory bulb. Brain Res 126, 1–18.

    Article  PubMed  CAS  Google Scholar 

  • Rogers JH (1992) Immunohistochemical markers in rat brain: Colocalization of calretinin and calbindin-D28k with tyrosine hydroxylase. Brain Res 587, 203–10.

    Article  PubMed  CAS  Google Scholar 

  • Rubin BD, Katz LC (1999) Optical imaging of odorant representations in the mammalian olfactory bulb. Neuron 23, 499–511.

    Article  PubMed  CAS  Google Scholar 

  • Sato T, Hirono J, Hamana H et al. (2008) Architecture of odor information processing in the olfactory system. Anat Sci Int 83, 195–206.

    Article  PubMed  CAS  Google Scholar 

  • Shepherd GM, Chen WR, Greer CA (2004) Olfactory bulb. In: The Synaptic Organization of the Brain, 5th edn (Shepherd GM, ed.). Oxford, New York, 165–216.

    Google Scholar 

  • Shipley MT, Ennis M, Puche A (2004) Olfactory system. In: The Rat Nervous System, 3rd edn (Paxinos G, ed.). Elsevier Academic Press, San Diego, 923–64.

    Google Scholar 

  • Shipley MT, Halloran FJ, de la TJ (1985) Surprisingly rich projection from locus coeruleus to the olfactory bulb in the rat. Brain Res 329, 294–9.

    Article  PubMed  CAS  Google Scholar 

  • Toida K, Kosaka K, Aika Y (2002) Catecholaminergic neurons in the olfactory bulb. In: Catecholamine Research: From Molecular Understanding to Clinical Medicine (Nagatsu T, Nabeshima R, McCarthy R, Goldstein D, eds). Kluwer Academic/Plenum, New York, 289–92.

    Google Scholar 

  • Toida K, Kosaka K, Aika Y, Kosaka T (2000) Chemically defined neuron groups and their subpopulations in the glomerular layer of the rat main olfactory bulb: IV. Intraglomerular synapses of tyrosine hydroxylase-immunoreactive neurons. Neuroscience 101, 11–17.

    Article  PubMed  CAS  Google Scholar 

  • Toida K, Kosaka K, Heizmann CW, Kosaka T (1994) Synaptic contacts between mitral/tufted cells and GABAergic neurons containing calcium binding protein parvalbumin in the rat olfactory bulb, with special reference to reciprocal synapses between them. Brain Res 650, 347–52.

    Article  PubMed  CAS  Google Scholar 

  • Toida K, Kosaka K, Heizmann CW, Kosaka T (1996) Electron microscopic serial-sectioning/reconstruction study of parvalbumin-containing neurons in the rat olfactory bulb. Neuroscience 72, 449–66.

    Article  PubMed  CAS  Google Scholar 

  • Toida K, Kosaka K, Heizmann CW, Kosaka T (1998) Chemically defined neuron groups and their subpopulations in the glomerular layer of the rat main olfactory bulb III. Structural features of calbindin D28K-immunoreactive neurons. J Comp Neurol 392, 179–98.

    Article  PubMed  CAS  Google Scholar 

  • Tsuruo Y, Hökfelt T, Visser TJ (1988) Thyrotropin-releasing hormone (TRH)-immunoreactive neuron populations in the rat olfactory bulb. Brain Res 447, 183–7.

    Article  PubMed  CAS  Google Scholar 

  • Vassar R, Chao SK, Sitcheran R, Nunez JM, Vosshall LB, Axel R (1994) Topographic organization of sensory projections to the olfactory bulb. Cell 79, 981–91.

    Article  PubMed  CAS  Google Scholar 

  • Zaborszky L, Carlsen J, Brashear HR, Heimer L (1986) Cholinergic and GABAergic afferents to the olfactory bulb in the rat with special emphasis on the projection neurons in the nucleus of the horizontal limb of the diagonal band. J Comp Neurol 243, 488–509.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazunori Toida.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toida, K. Synaptic organization of the olfactory bulb based on chemical coding of neurons. Anato Sci Int 83, 207–217 (2008). https://doi.org/10.1111/j.1447-073X.2008.00247.x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1111/j.1447-073X.2008.00247.x

Key words

Navigation