Skip to main content
Log in

Immunoelectron microscopic analysis of the distribution of tyrosine kinase receptor B in olfactory axons

  • Original Article
  • Published:
Anatomical Science International Aims and scope Submit manuscript

Abstract

To determine the morphological basis for the neurotrophic effects of brain-derived neurotrophic factor (BDNF) in the primary olfactory pathway (POP), tyrosine kinase receptor B (TrkB), a membrane-bound receptor for BDNF, was identified and localized in axons of olfactory receptor cells (ORC) of neonatal rat olfactory mucosa using immuno-histochemical and-cytochemical techniques. Initially, the immunospecificity of an anti-TrkB antibody that had been used as a specific antibody for full-length TrkB was confirmed in the olfactory mucosa. Then, a combination of a reduced osmium-LR-White and post-embedding immunogold technique was applied to ORC axons in the lamina propria just beneath the olfactory epithelium. Immunogold particles, which indicate TrkB immunoreactivity, were noted either in close association with the plasma membranes of ORC axons, and designated plasma-lemmal (PL), or within their cytoplasm, and designated cytoplasmic (CP). Most PL particles were seen in the CP portion of the axonal plasma membranes, suggesting that the anti-TrkB antibody binds to the membrane-inserted TrkB that acts as a functional receptor. Some CP particles were on vesicular structures. Quantitative analysis demonstrated that the ratio of CP to PL particles was 7∶3, and this ratio was constant between animals examined (n=5). Because membrane proteins are wrapped in vesicles and transported within the axonal cytoplasm and inserted into the plasma membrane to function there, the present study suggests that TrkB is transported within the cytoplasm of ORC axons and is positioned as a functional receptor for BDNF in their membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aoki C, Wu K, Elste A et al. (2000) Localization of brain-derived neurotrophic factor and TrkB receptors to postsynaptic densities of adult rat cerebral cortex. J Neurosci Res 59, 454–63.

    Article  PubMed  CAS  Google Scholar 

  • Barde YA (1989) Trophic factors and neuronal survival. Neuron 2, 1525–34.

    Article  PubMed  CAS  Google Scholar 

  • Buchner K, Seitz-Tutter D, Schönitzer K, Weiss DG (1987) A quantitative study of anterograde and retrograde axonal transport of exogenous proteins in olfactory nerve C-fibers. Neuroscience 22, 697–707.

    Article  PubMed  CAS  Google Scholar 

  • Carter LA, Roskams AJ (2002) Neurotrophins and their receptors in the primary olfactory neuraxis. Microsc Res Tech 58, 189–96.

    Article  PubMed  CAS  Google Scholar 

  • Chao MV (1992) Neurotrophin receptors: A window into neuronal differentiation. Neuron 9, 583–93.

    Article  PubMed  CAS  Google Scholar 

  • Davies AM (1994) The role of neurotrophins in the developing nervous system. J Neurobiol 25, 1334–48.

    Article  PubMed  CAS  Google Scholar 

  • Deckner ML, Frisen J, Verge VMK, Hokfelt T, Risling M (1993) Localization of neurotrophin receptors in olfactory epithelium and bulb. Neuroreport 5, 301–4.

    Article  PubMed  CAS  Google Scholar 

  • Drake CT, Milner TA, Patterson SL (1999) Ultrastructural localization of full-length trkB immunoreactivity in rat hippocampus suggests multiple roles in modulating activity-dependent synaptic plasticity. J Neurosci 19, 8009–26.

    PubMed  CAS  Google Scholar 

  • Farbman AI (1992) Structure of olfactory mucous membrane. In: Cell Biology of Olfaction, Developmental and Cell Biology Series 27 (Barlow PW, Bray D, Green PB, Slack JMW, eds). Cambridge University Press. Cambridge, 24–74.

    Google Scholar 

  • Farbman AI, Margolis FL (1980) Olfactory marker protein during ontogeny: Immunohistochemical localization. Dev. Biol 74, 205–15

    Article  PubMed  CAS  Google Scholar 

  • Fawcett JP, Alonso-Vanegas MA, Morris SJ, Miller FD, Sadikot AF, Murphy RA (2000) Evidence that brain-derived neurotrophic factor from presynaptic nerve terminals regulates the phenotype of calbindin-containing neurons in the lateral septum. J Neurosci 20, 274–82.

    PubMed  CAS  Google Scholar 

  • Fukumitsu H, Sometani A, Ohmiya M et al. (2000) Induction of a physiologically active brain-derived neurotrophic factor in the infant rat brain by peripheral administration of 4-methylcatechol. Neurosci Lett 274, 115–18.

    Article  Google Scholar 

  • Graziadei PP (1990) Olfactory development. In: Development of Sensory Systems in Mammals (Coleman JR, ed.). John Wiley & Sons, New York, 519–66.

    Google Scholar 

  • Graziadei PPC (1977) Functional anatomy of the mammalian chemoreceptor system. In: Chemical Signals in Vertebrates (Müller-Schwarze D, Mozell MM, eds.). Plenum Press, New York, 435–54.

    Google Scholar 

  • Hasegawa R, Takami S, Kudo A, Kawakami H, Nishiyama F (2002) Morphological analysis for distributional patterns of BDNFmRNA in the rat olfactory epithelium. Acta Histochem Cytochem 35, 60.

    Google Scholar 

  • Hasegawa R, Takami S, Nishiyama F (2003a) Distribution of TrkB, the high affinity receptor for brain-derived neurotrophic factor, in the primary olfactory pathway. Kaibogaku Zasshi 78 (Suppl.), 259.

    Google Scholar 

  • Hasegawa R, Takami S, Nishiyama F (2003b) Analysis of TrkB-immunoreactive olfactory receptor neurons in the rat olfactory epithelium by confocal laser scanning microscopy. Jpn J Taste Smell Res 10, 701–4.

    Google Scholar 

  • Heumann R (1994) Neurotrophin signalling Curr Opin Neurobiol 4, 668–79.

    Article  PubMed  CAS  Google Scholar 

  • Hirokawa N, Takemura R (2005) Molecular motors and mechanisms of directional transport in neurons. Nat Rev Neurosci 6, 201–14.

    Article  PubMed  CAS  Google Scholar 

  • Ip NY, Li Y, Yancopoulos GD, Lindsay RM (1993) Cultured hippocampal neurons show responses to BDNF, NT-3, and NT-4, but not NGF. J Neurosci 13, 3394–405.

    PubMed  CAS  Google Scholar 

  • Kaplan DR, Miller FD (2000) Neurotrophin signal transduction in the nervous system. Curr Opin Neurobiol 10, 381–91.

    Article  PubMed  CAS  Google Scholar 

  • Klein R, Conway D, Parada LF, Barbacid M (1990) The trkB tyrosine protein kinase gene codes for a second neurogenic receptor that lacks the catalytic kinase domain. Cell 61, 647–56.

    Article  PubMed  CAS  Google Scholar 

  • Klein R, Parada LF, Coulier F, Barbacid M (1989) trkB, a novel tyrosine protein kinase receptor expressed during mouse neural development. EMBO J 8, 3701–9.

    PubMed  CAS  Google Scholar 

  • Klöcker N, Kermer P, Weishaupt JH, Labes M, Ankerhold R, Bähr M (2000) Brain-derived neurotrophic factor-mediated neuroprotection of adult rat retinal ganglion cells in vivo does not exclusively depend on phosphatidyl-inositol-3′-kinase/protein kinase B signalling. J Neurosci 20, 6962–7.

    PubMed  Google Scholar 

  • Korsching S (1993) The neurotrophic factor concept: A reexamination. J Neurosci 13, 2379–748.

    Google Scholar 

  • Larkfors L, Lindsay RM, Alderson RF (1996) Characterization of the responses of Purkinje cells to neurotrophin treatment. J Neurochem 66, 1362–73.

    Article  PubMed  CAS  Google Scholar 

  • Lindsay RM, Wiegand SJ, Altar CA, DiStefano PS (1994) Neurotrophic factor: From molecule to man. Trends Neurosci 17, 182–90.

    Article  PubMed  CAS  Google Scholar 

  • Mackay-Sim A, Kittel PW (1991) On the life span of olfactory receptor neurons. Eur J Neurosci 3, 209–15.

    Article  PubMed  Google Scholar 

  • Middlemas DS, Lindberg RA, Hunter T (1991) trkB, a neural receptor protein-tyrosine kinase: Evidence for a full-length and two truncated receptors. Mol Cell Biol 11, 143–53.

    PubMed  CAS  Google Scholar 

  • Mizuno K, Carnahan J, Nawa H (1994) Brain-derived neurotrophic factor promotes differentiation of striatal GABAergic neurons. Dev Biol 165, 243–56.

    Article  PubMed  CAS  Google Scholar 

  • Monti Graziadei GA, Stanley RS, Graziadei PPC (1980) The olfactory marker protein in the olfactory system of the mouse during development. Neuroscience 5, 1239–52.

    Article  Google Scholar 

  • Moulton DG (1974) Dynamics of cell populations in the olfactory epithelium Ann N Y Acad Sci 237, 52–61.

    Article  PubMed  CAS  Google Scholar 

  • Moulton DG (1975) Cell renewal in the olfactory epithelium. In: Olfaction and Taste V (Denton DA, Coghlan JP, eds). Academic Press, New York, 111–14.

    Google Scholar 

  • Nakazawa T, Tamai M, Mori N (2002) Brain-derived neurotrophic factor prevents axotomized retinal ganglion cell death through MAPK and PI3K signaling pathways. Invest Ophthalmol Vis Sci. 43, 3319–26.

    PubMed  Google Scholar 

  • Nibu K, Kondo K, Ohta Y, Ishibashi T, Rothstein JL, Kaga K (2001) Expression of NeuroD and TrkB in developing and aged mouse olfactory epithelium Neuroreport 12, 1615–19.

    Article  PubMed  CAS  Google Scholar 

  • Nibu K, Zhang X et al. (1999) Olfactory neuron-specific expression of NeuroD in mouse and human nasal mucosa. Cell Tissue Res 298, 405–14.

    Article  PubMed  CAS  Google Scholar 

  • Pappas IS, Parnavelas JG (1997) Neurotrophins and basic fibroblast growth factor induce the differentiation of calbindin-containing neurons in the cerebral cortex. Exp Neurol 144, 302–14.

    Article  PubMed  CAS  Google Scholar 

  • Patterson SL, Pittenger C, Morozov A et al. (2001) Some forms of cAMP-mediated long-lasting potentiation are associated with release of BDNF and nuclear translocation of phospho-MAP kinase. Neuron 32, 123–40.

    Article  PubMed  CAS  Google Scholar 

  • Peretti D, Peris L, Rosso S, Quiroga S, Cáceres A (2000) Evidence for the involvement of KIF4 in the anterograde transport of L1-containing vesicles J Cell Biol 149, 141–52.

    Article  PubMed  CAS  Google Scholar 

  • Poo M (2001) Neurotrophins as synaptic modulators Nat Rev Neurosci 2, 24–32.

    Article  PubMed  CAS  Google Scholar 

  • Roskams AJI, Bethel MA, Hurt KJ, Ronnett GV (1996) Sequential expression of Trks A, B, and C in the regenerating olfactory neuroepithelium J Neurosci 16, 1294–307.

    PubMed  CAS  Google Scholar 

  • Schwob JE (2002) Neural regeneration and the peripheral olfactory system. Anat Rec B New Anat 269, 33–49.

    Article  Google Scholar 

  • Takami S, Getchell ML, Yamagishi M, Ablers KM, Getchell TV (1995) Enhanced extrinsic innervation of nasal and oral chemosensory mucosae in keratin 14-NGF transgenic mice. Cell Tissue Res 282, 481–91.

    Article  PubMed  CAS  Google Scholar 

  • Takami S, Hasegawa R et al. (2004) Intra-epithelial distribution of a neurotrophin receptor in the rodent olfactory epithelium. In: Proceedings of the 8th Asia-Pacific Conference on Electron Microscopy (Tanaka N, Takano Y, Mori H, et al.. eds). 8APEM Publication Committee. Kanazawa, 909–10.

    Google Scholar 

  • Takami S, Hirosawa K (1990) Electron microscopic observations on the vomeronasal sensory epithelium of a crotaline snake, Trimeresurus flavoviridis. J Morphol 205, 45–61.

    Article  Google Scholar 

  • Takami S, Hasegawa R, Nishiyama F (2002) Immunohistochemical distribution of a neurotrophin receptor in the olfactory mucosa by triple-labeling laser scanning microscopy Jpn J Taste Smell Res. 9, 329–32 (in Japanese with English abstract).

    Google Scholar 

  • Takami S, Imakawa R, Nishiyama F (2000) Distribution of BDNF gene in the rat olfactory epithelium Kaibogaku Zasshi 75, 157.

    Google Scholar 

  • Takami S, Yukimatsu M, Matsumura G, Nishiyama F (2001) Vomeronasal epithelial cells of human fetuses contain immunoreactivity for G proteins, Goα and Giα2. Chem Senses 26, 517–22.

    Article  PubMed  CAS  Google Scholar 

  • Takami S, Iwai T, Hasegawa R, Nishiyama F (2005) Ultrastructural localization of α-galactose-containing glycoconjugates in the rat vomeronasal organ. J Neurocytol 34, 123–33.

    Article  PubMed  CAS  Google Scholar 

  • Tamaki H, Yamashina S (1994) Improved method for postembedding cytochemistry using reduced osmium and LR White resin. J Histochem Cytochem 42, 1285–93.

    PubMed  CAS  Google Scholar 

  • Thoenen H (1991) The changing scene of neurotrophic factors. Trends Neurosci 14, 165–70.

    Article  PubMed  CAS  Google Scholar 

  • Ventimiglia R, Mather PE, Jones BE, Lindsay RM (1995) The neurotrophins BDNF, NT-3 and NT-4/5 promote survival and morphological and biochemical differention of striatal neurons in vitro. Eur J Neurosci 7, 213–22.

    Article  PubMed  CAS  Google Scholar 

  • Weiler E, Farbman AI (1997) Proliferation in the rat olfactory epithelium: Age-dependent changes. J Neurosci 17, 3610–22.

    PubMed  CAS  Google Scholar 

  • Weiler E, Farbman AI (1998) Proliferation decrease in the olfactory epithelium during postnatal development. Ann N Y Acad Sci 855, 230–4.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeru Takami.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hasegawa, R., Takami, S. & Nishiyama, F. Immunoelectron microscopic analysis of the distribution of tyrosine kinase receptor B in olfactory axons. Anato Sci Int 83, 186–194 (2008). https://doi.org/10.1111/j.1447-073X.2007.00208.x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1111/j.1447-073X.2007.00208.x

Key Words

Navigation