Skip to main content
Log in

Possibility of using nerve segments dissected from human cadavers for grafting: Preliminary report

  • Original Article
  • Published:
Anatomical Science International Aims and scope Submit manuscript

Abstract

An intercostal nerve obtained from a human cadaver 6 h post-mortem was transplanted into the rat sciatic nerve and nerve regeneration was observed 4 and 8 weeks after surgery. Sciatic nerves from deceased rats up to 2 days post-mortem were also transplanted for comparison. Good nerve regeneration was observed through the human cadaver-derived graft to the distal segment at the medial plantal nerve 8 weeks after surgery. The results of the present study indicate the possibility that nerves from human cadavers can be used for nerve grafting in clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Fansa H, Schneider W, Wolf G, Keilhoff G (2002) Host responses after acellular muscle basal lamina allografting used as a matrix for tissue engineered nerve grafts1. Transplantation 74, 381–7.

    Article  PubMed  Google Scholar 

  • Fox IK, Jaramillo A, Hunter DA, Rickman SR, Mohanakumar T, Mackinnon SE (2005) Prolonged cold-preservation of nerve allografts. Muscle Nerve 31, 59–69.

    Article  PubMed  Google Scholar 

  • Fujimoto E, Miki A, Ide C (1992) Regenerating axons in basal lamina tubes of non-neural tissue. Biomed Res 13, 59–68.

    Google Scholar 

  • Fujimoto E, Mizoguchi A, Hanada K, Yajima M, Ide C (1997) Basic fibroblast growth factor promotes extension of regenerating axons of peripheral nerve. In vivo experiments using a Schwann cell basal lamina tube model. J Neurocytol 26, 511–28.

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto T, Suzuki Y, Kitada M et al. (2002) Peripheral nerve regeneration through alginate gel: Analysis of early outgrowth and late increase in diameter of regenerating axons. Exp Brain Res 146, 356–68.

    Article  PubMed  CAS  Google Scholar 

  • Hudson TW, Zawko S, Deister C et al. (2004) Optimized acellular nerve graft is immunologically tolerated and supports regeneration. Tissue Eng 10, 1641–51.

    Article  PubMed  CAS  Google Scholar 

  • Ide C (1984) Nerve regeneration through the basal lamina scaffold of the skeletal muscle. Neurosci Res 1, 379–91.

    Article  Google Scholar 

  • Ide C (1996) Peripheral nerve regeneration. Neurosci Res 25, 101–21.

    PubMed  CAS  Google Scholar 

  • Ide C, Tohyama K, Yokota R, Nitatori T, Onodera S (1983) Schwann cell basal lamina and nerve regeneration. Brain Res 288, 61–75.

    Article  PubMed  CAS  Google Scholar 

  • Ikeguchi R, Kakinoki R, Okamoto T, Matsumoto T, Hyon SH, Nakamura T (2003) Successful storage of peripheral nerve before transplantation using green tea polyphenol: An experimental study in rats. Exp Neurol 184, 688–96.

    Article  PubMed  CAS  Google Scholar 

  • Kerns JM, Danielsen N, Zhao Q, Lundborg G, Kanje M (2003) A comparison of peripheral nerve regeneration in acellular muscle and nerve autografts. Scand J Plast Reconstr Surg Hand Surg 37, 193–200.

    Article  PubMed  Google Scholar 

  • Kim BS, Yoo JJ, Atala A (2004) Peripheral nerve regeneration using acellular nerve grafts. J Biomed Mater Res A 68, 201–9.

    Article  PubMed  Google Scholar 

  • Lundborg G (2004) Alternatives to autologous nerve grafts. Review. Handchir Mikrochir Plast Chir 36, 1–7.

    Article  PubMed  CAS  Google Scholar 

  • Meek MF, Varejao AS, Geuna S (2004) Use of skeletal muscle tissue in peripheral nerve repair: Review of the literature. Tissue Eng 10, 1027–36.

    PubMed  CAS  Google Scholar 

  • Mligiliche N, Kitada M, Ide C (2001) Grafting of detergent- denatured skeletal muscles provides effective conduits for extension of regenerating axons in the rat sciatic nerve. Arch Histol Cytol 64, 29–36.

    Article  PubMed  CAS  Google Scholar 

  • Mligiliche N, Endo K, Okamoto K, Fujimoto E, Ide C (2002) Extracellular matrix of human amnion manufactured into tubes as conduits for peripheral nerve regeneration. J Biomed Mater Res 63, 591–600.

    Article  PubMed  CAS  Google Scholar 

  • Mligiliche NL, Tabata Y, Kitada M et al. (2003) Poly lactic acid-caprolactone copolymer tube with a denatured skeletal muscle segment inside as a guide for peripheral nerve regeneration: A morphological and electrophysiological evaluation of the regenerated nerves. Anat Sci Int 78, 156–61.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura T, Inada Y, Fukuda S et al. (2004) Experimental study on the regeneration of peripheral nerve gaps through a polyglycolic acid-collagen (PGA-collagen) tube. Brain Res 1027, 18–29.

    Article  PubMed  CAS  Google Scholar 

  • Osawa T, Tohyama K, Ide C (1990) Allogeneic nerve grafts in the rat, with special reference to the role of Schwann cell basal laminae in nerve regeneration. J Neurocytol 19, 833–49.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki K, Suzuki Y, Tanihara M et al. (2000) Reconstruction of rat peripheral nerve gap without sutures using freeze-dried alginate gel. J Biomed Mater Res 49, 528–33.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Etsuko Fujimoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujimoto, E., Ohshima, C., Okamoto, K. et al. Possibility of using nerve segments dissected from human cadavers for grafting: Preliminary report. Anato Sci Int 81, 34–38 (2006). https://doi.org/10.1111/j.1447-073X.2006.00132.x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1111/j.1447-073X.2006.00132.x

Key words

Navigation