Skip to main content
Log in

Effects of relaxin and IGF-I on capacitation, acrosome reaction, cholesterol efflux and utilization of labeled and unlabeled glucose in porcine spermatozoa

  • Original Article
  • Andrology
  • Published:
Reproductive Medicine and Biology

Abstract

Aim

Relaxin and insulin-like growth factor (IGF)-I have pronounced effects on the male and female reproductive tracts. The aim of this study was to investigate the effects of relaxin and IGF-I on the motility, capacitation, acrosome reaction, cholesterol efflux and utilization of glucose in porcine spermatozoa.

Methods

Swim-up separated spermatozoa that had been washed twice were incubated at 37°C for 1 or 4 h in modified Tyrode’s albumin lactate pyruvate (mTALP) medium supplemented without (control) or with relaxin (20 ng/mL) or IGF-I (20 ng/mL) or both (10 + 10 ng/mL).

Results

Progressive motility and the induction rate of capacitation and acrosome reaction were increased (P < 0.05) by relaxin and IGF-I alone or in combination, especially after 4 h of incubation. Relaxin alone or combined with IGF-I enhanced (P < 0.05) the cholesterol efflux after 4 h, whereas IGF-I alone did not show any significant effect on the cholesterol efflux compared with the control at any time point. The utilization rates of labeled and unlabeled glucose increased (P < 0.05) in spermatozoa incubated with relaxin or IGF-I alone or in combination compared with the control.

Conclusion

Thus, supplementation of relaxin alone or combined with IGF-I into the medium possibly plays a beneficial role in porcine spermatozoal prefertilization events in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sherwood OD. Relaxin. In: Knobil E, Neill J, eds. The Physiology of Reproduction, 2nd edn. New York: Raven Press, 1994; 861–1009.

    Google Scholar 

  2. Weiss G. Relaxin in the male. Biol Reprod 1989; 40: 197–200.

    Article  PubMed  CAS  Google Scholar 

  3. Schwabe C, Büllesbach EE. Relaxin and the Fine Structure of Proteins. Berlin: Springer Verlag, 1998.

    Google Scholar 

  4. Sasaki Y, Kohsaka T, Kawarasaki T et al. Immunoreactive relaxin in seminal plasma of fertile boars and its correlation with sperm motility characteristics determined by computerassisted digital image analysis. Int J Androl 2001; 24: 24–34.

    Article  PubMed  CAS  Google Scholar 

  5. Kohsaka T, Hamano K, Sasada H et al. Seminal immunoreactive relaxin in domestic animals and its relationship to sperm motility as a possible index for predicting the fertilizing ability of sires. Int J Androl 2003; 26: 115–120.

    Article  PubMed  CAS  Google Scholar 

  6. Desnoyers L, Manjunath P. Major proteins of bovine seminal fluid bind to insulin-like growth factor II. J Biol Chem 1994; 269: 5776–5780.

    PubMed  CAS  Google Scholar 

  7. Henricks DM, Kouba AJ, Lackey BR, Boone WR, Gray SL. Identification of insulin-like growth factor-I in bovine seminal plasma and its receptor on spermatozoa. Influence on sperm motility. Biol Reprod 1998; 59: 330–337.

    Article  PubMed  CAS  Google Scholar 

  8. Miao ZR, Lin TK, Bongso TA, Zhoun X, Cohen P, Lee KO. Effect of insulin-like growth factors (IGFs) and IGF binding proteins on in vitro sperm motility. Clin Endocrinol 1998; 49: 235–239.

    Article  CAS  Google Scholar 

  9. Hoeflich A, Reichenbach HD, Schwartz J et al. Insulin-like growth factors and IGF binding proteins in bovine seminal plasma. Dom Anim Endocrinol 1999; 17: 39–51.

    Article  CAS  Google Scholar 

  10. Carrell DT, Peterson CM, Urry RL. The binding of recombinant human relaxin to human spermatozoa. Endocr Res 1995; 21: 697–707.

    PubMed  CAS  Google Scholar 

  11. Naz RK, Padman P. Identification of insulin-like growth factor (IGF)-I receptor in human sperm cell. Arch Androl 1999; 43: 153–159.

    Article  PubMed  CAS  Google Scholar 

  12. Miah AG, Tareq KMA, Hamano K, Kohsaka T, Tsujii H. Effect of relaxin on acrosome reaction and utilization of glucose in boar spermatozoa. J Reprod Dev 2006; 52: 773–779.

    Article  PubMed  CAS  Google Scholar 

  13. Miah AG, Hossain MS, Tareq KMA et al. Effect of relaxin on motility, acrosome reaction and viability of cryopreserved boar spermatozoa. Reprod Med Biol 2006; 5: 215–220.

    Article  Google Scholar 

  14. Miah AG, Salma U, Tareq KMA, Kohsaka T, Tsujii H. Effect of relaxin on motility, acrosome reaction, and utilization of glucose in fresh and frozen-thawed bovine spermatozoa. Anim Sci J 2007; 78: 495–502.

    Article  CAS  Google Scholar 

  15. Lessing JB, Brenner SH, Schoenfeld C et al. The effect of relaxin on the motility of sperm in freshly thawed human semen. Fertil Steril 1985; 44: 406–409.

    PubMed  CAS  Google Scholar 

  16. Minelli A, Moroni M, Castellini C. Isolation and purification of the IGF-I protein complex from rabbit seminal plasma. effects on sperm motility and viability. J Exp Zool 2001; 290: 279–290.

    Article  PubMed  CAS  Google Scholar 

  17. Mukai C, Okuno M. Glycolysis plays a major role for adenosine triphosphate addition in mouse sperm flagellar movement. Biol Reprod 2004; 71: 540–547.

    Article  PubMed  CAS  Google Scholar 

  18. Vandevoort CA, Overstreet JW. Effect of glucose and other energy substrates on the hyperactivated motility of macaque sperm and the zona pellucida-induced acrosome reaction. J Androl 1995; 16: 327–333.

    PubMed  CAS  Google Scholar 

  19. Yanagimachi R. Mammalian fertilization. In: Knobil E, Neill JD, eds. The Physiology of Mammalian Reproduction, 2nd edn. New York: Raven Press, 1994; 10.

    Google Scholar 

  20. Visconti PE, Westbrook VA, Chertihin O, Demarco I, Sleight S, Diekman AB. Novel signaling pathways involved in sperm acquisition of fertilizing capacity. J Reprod Immunol 2002; 53: 133–150.

    Article  PubMed  CAS  Google Scholar 

  21. Cross NL. Role of cholesterol in sperm capacitation. Biol Reprod 1998; 59: 7–11.

    Article  PubMed  CAS  Google Scholar 

  22. Visconti PE, Galantino-Homer H, XiaoPing N et al. Cholesterol efflux-mediated signal transduction in mammalian sperm. J Biol Chem 1999; 274: 3235–3242.

    Article  PubMed  CAS  Google Scholar 

  23. Kohsaka T, Takahara H, Sugawara K, Tagami S. Endogenous heterogeneity of relaxin and sequence of the major form in pregnant sow ovaries. Biol Chem Hoppe-Seyler 1993; 374: 203–210.

    PubMed  CAS  Google Scholar 

  24. Rath D, Long CR, Dbrinsky JR, Welch GR, Schreir LL, Johnson LA. In vitro production of sexed embryos for gender pre selection: high-speed sorting of X-chromosome bearing sperm to produce pigs after embryo transfer. J Anim Sci 1999; 77: 3346–3352.

    PubMed  CAS  Google Scholar 

  25. Johnson LA, Aalbers JG, Grooten HJG. Artificial insemination of swine: fecundity of boar semen stored in Beltsville TS (BTS), modified Modena (MM), or MR-A and inseminated on one, three and four days after collection. Zuchthyg 1988; 23: 49–55.

    Google Scholar 

  26. Lackey BR, Gray SL, Henricks DM. Measurement of leptin and insulin-like growth factor-I in seminal plasma from different species. Physiol Res 2002; 51: 309–311.

    PubMed  CAS  Google Scholar 

  27. Harayama H, Miyake M, Kato S. Role of cyclic adenosine 3′, 5′-monophosphate and serum albumin in head-to-head agglutination of boar spermatozoa. Reprod Fertil Dev 2000; 12: 307–318.

    Article  PubMed  CAS  Google Scholar 

  28. Alvarez JG, Storey BT. Differential incorporation of fatty acids into and peroxidative loss of fatty acids from phospholipids of human spermatozoa. Mol Reprod Dev 1995; 42: 334–346.

    Article  PubMed  CAS  Google Scholar 

  29. Hicks JJ, Pedron N, Rosado A. Modifications of human spermatozoa glycolysis by cyclic adenosine monophosphate (cAMP), estrogens, and follicular fluid. Ferti Steril 1972; 23: 886–893.

    CAS  Google Scholar 

  30. Williams AC, Ford WC. The role of glucose in supporting motility and capacitation in human spermatozoa. J Androl 2001; 22: 680–695.

    PubMed  CAS  Google Scholar 

  31. Schwabe C, Bullesbach EE. Relaxin: structures, functions, promises and nonevolution. FASEB J 1994; 8: 1152–1160.

    PubMed  CAS  Google Scholar 

  32. Kathleen MO, Judy AL, Peter LR, Steve VR, Carol AB. Relaxin increases insulin-like growth factors (IGFs) and IGF-binding proteins of the pig uterus in vivo. Endocrinology 1997; 138: 3652–3658.

    Article  Google Scholar 

  33. Ohleth KM, Bagnell CA. Relaxin-induced deoxyribonucleic acid synthesis in porcine granulosa cells is mediated by insulin-like growth factor-I. Biol Reprod 1995; 53: 1286–1292.

    Article  PubMed  CAS  Google Scholar 

  34. Palejwala S, Stein D, Wojtczuk A, Weiss G, Goldsmith LT. Demonstration of a relaxin receptor and relaxin-stimulated tyrosine phosphorylation in human lower uterine segment fibroblasts. Endocrinology 1998; 139: 1208–1212.

    Article  PubMed  CAS  Google Scholar 

  35. Glomet JA. The plasma lecithin: cholesterol acyltransferase reaction. J Lipid Res 1968; 9: 155–167.

    Google Scholar 

  36. Johnson WJ, Mahlberg FH, Rothblat GH, Phillips MC. Cholesterol transport between cells and high-density lipoproteins. Biochim Biophys Acta 1991; 1085: 273–298.

    PubMed  CAS  Google Scholar 

  37. Phillips MC, Johnson WJ, Rothblat GH. Mechanisms and consequences of cellular cholesterol exchange and transfer. Biochim Biophys Acta 1987; 906: 223–276.

    PubMed  CAS  Google Scholar 

  38. Fielding CJ, Fielding PE. Molecular physiology of reverse cholesterol transport. J Lipid Res 1995; 36: 211–228.

    PubMed  CAS  Google Scholar 

  39. Naz RK, Rajesh PB. Role of tyrosine phosphorylation in sperm capacitation/acrosome reaction. Reprod Biol Endocrinol 2004; 2: 75–82.

    Article  PubMed  Google Scholar 

  40. Vemuri R, Philipson KD. Influence of sterols and phospholipids on sarcolemmal and sarcoplasmic reticular cation transporters. J Biol Chem 1989; 264: 8680–8685.

    PubMed  CAS  Google Scholar 

  41. Shouffani A, Kanner BL. Cholesterol is required for the reconstruction of the sodium-and chloride-coupled, gamma-aminobutyric acid transporter from rat brain. J Biol Chem 1990; 265: 6002–6008.

    PubMed  CAS  Google Scholar 

  42. Osheroff JE, Visconti PE, Valenzuela JP, Travis AJ, Alvarez J, Kopf GS. Regulation of human sperm capacitation by a cholesterol efflux-stimulated signal transduction pathway leading to protein kinase A-mediated up-regulation of protein tyrosine phosphorylation. Mol Hum Reprod 1999; 5: 1017–1026.

    Article  PubMed  CAS  Google Scholar 

  43. Motamed KA, Cheung AP, Lee CY. Cholesterol inhibitory effects on human sperm-induced acrosome reaction. J Androl 2000; 21: 586–594.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul Gaffar Miah.

About this article

Cite this article

Miah, A.G., Salma, U., Takagi, Y. et al. Effects of relaxin and IGF-I on capacitation, acrosome reaction, cholesterol efflux and utilization of labeled and unlabeled glucose in porcine spermatozoa. Reprod Med Biol 7, 29–36 (2008). https://doi.org/10.1111/j.1447-0578.2007.00198.x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1111/j.1447-0578.2007.00198.x

Key words

Navigation