Skip to main content
Log in

Proliferation of spermatogonial stem cells and spermatogenesis in vitro

  • Review Article
  • Andrology
  • Published:
Reproductive Medicine and Biology

Abstract

Detection of spermatogonial stem cells (SSC) became possible 10 years ago, with the transplantation of germ cells into the seminiferous tubules of mice. Using this assay system, attempts to maintain and expand SSC in vitro finally bore fruit. Gonocytes from neonatal mice and spermatogonial stem cells from adult mice were plated on feeder cells in a medium supplemented with Glial cell line-derived neurotrophic factor (GDNF) along with certain other factors. The germ cells that emerged under such conditions, named germline stem (GS) cells, proliferated exponentially through self-renewing division. GS cells in vitro show features of differentiation as well. Some expressed c-kit, which is a cell surface marker of differentiating spermatogonia. Therefore, it seems that GS cells undergo both self-renewing and differentiating cell divisions in vitro. There is a century of history behind attempts to reproduce spermatogenesis in vitro and significant progress has been made. Nonetheless, there are few established culture-based protocols for recreating spermatogenesis in vitro. GS cells would be an ideal starting material in this regard.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Russell LD, Ettlin RA, Hikim AP, Clegg ED. Mammalian spermatogenesis. In: Russell LD, Ettlin RA, Sinha Hikim AP, Clegg RD, eds. Histological and Histopathological Evaluation of the Testis. Clearwater FL: Cache River Press, 1990; 1–40.

    Google Scholar 

  2. Huckins C. The morphology and kinetics of spermatogonial degeneration in normal adult rats: an analysis using a simplified classification of the germinal epithelium. Anat Rec 1978; 190: 905–926.

    Article  PubMed  CAS  Google Scholar 

  3. Furuchi T, Masuko K, Nishimune Y, Obinata M, Matsui Y. Inhibition of testicular germ cell apoptosis and differentiation in mice misexpressing Bcl2 in spermatogonia. Development 1996; 122: 1703–1709.

    PubMed  CAS  Google Scholar 

  4. Rodriguiz I, Ody C, Araki K, Garcia I, Vassalli P. An early and massive wave of germinal cell apoptosis is required for the development of functional spermatogenesis. EMBO J 1997; 16: 2262–2270.

    Article  Google Scholar 

  5. Walter CA, Intano GW, McCarrey JR McMahan CA Walter RB. Mutation frequency declines during spermatogenesis in young mice but increases in old mice. Proc Natl Acad Sci USA 1998; 95: 10015–10019.

    Article  PubMed  CAS  Google Scholar 

  6. Baarends WM, van der Laan R, Grootegoed JA. DNA repair mechanisms and gametogenesis. Reproduction 2001; 121: 31–39.

    Article  PubMed  CAS  Google Scholar 

  7. Ogawa T, Ohmura M, Ohbo K The niche for spermatogonial stem cells in the mammalian testis. Int J Hematol 2005; 82: 381–388.

    Article  PubMed  CAS  Google Scholar 

  8. Russell LD. Morphological and functional evidence for Sertoli-germ cell relationships. In: Russell LD, Griswold MD, eds. The Sertoli Cell. Clearwater FL: Cache River Press, 1993; 365–390.

    Google Scholar 

  9. Brinster RL, Zimmermann JW. Spermatogenesis following male germ-cell transplantation. Proc Natl Acad Sci USA 1994; 91: 11298–11302.

    Article  PubMed  CAS  Google Scholar 

  10. Brinster RL, Avarbock MR. Germline transmission of donor haplotype following spermatogonial transplantation. Proc Natl Acad Sci USA 1994; 91: 11302–11307.

    Google Scholar 

  11. Clouthier DE, Avarbock MR, Maika SD, Hammer RE, Brinster RL. Rat spermatogenesis in mouse testis. Nature 1996; 381: 418–421.

    Article  PubMed  CAS  Google Scholar 

  12. Avarbock MR, Brinster CJ, Brinster RL. Reconstitution of spermatogenesis from frozen spermatogonial stem cells. Nat Med 1996; 2: 693–696.

    Article  PubMed  CAS  Google Scholar 

  13. Ogawa T. Spermatogonial transplantation: the principle and possible applications. J Mol Med 2001; 79: 368–374.

    Article  PubMed  CAS  Google Scholar 

  14. Brinster RL. Germline stem cell transplantation and transgenesis. Science 2002; 296: 2174–2176.

    Article  PubMed  CAS  Google Scholar 

  15. Shinohara T, Avarbock MR, Brinster RL. β1 and α6-intergin are surface markers on mouse spermatogonial stem cells. Proc Natl Acad Sci USA 1999; 96: 5504–5509.

    Article  PubMed  CAS  Google Scholar 

  16. Shinohara T, Orwig KE, Avarbock MR, Brinster RL. Spermatogonial stem cell enrichment by multiparameter selection of mouse testis cells. Pro C Natl Acad Sci USA 2000; 97: 8346–8351.

    Article  CAS  Google Scholar 

  17. Kubota H, Avarbock MR, Brinster RL. Spermatogonial stem cells share some, but not all, phenotypic and functional characteristics with other stem cells. Proc Natl Acad Sci USA 2003; 100: 6487–6492.

    Article  PubMed  CAS  Google Scholar 

  18. Feng LX, Chen Y, Dettin L et al. Generation and in vitro differentiation of a spermatogonial cell line. Science 2002; 297: 392–395.

    Article  PubMed  CAS  Google Scholar 

  19. van Pelt AM, Roepers-Gajadien HL, Gademan IS, Creemers LB, de Rooij DG, van Dissel-Emiliani FM. Establishment of cell lines with rat spermatogonial stem cell characteristics. Endocrinology 2002; 143: 1845–1850.

    Article  PubMed  Google Scholar 

  20. Kanatsu-Shinohara M, Ogonuki N, Inoue K et al. Longterm proliferation in culture and germline transmission of mouse male germline stem cells. Biol Reprod 2003; 69: 612–616.

    Article  PubMed  CAS  Google Scholar 

  21. Kubota H, Avarbock MR, Brinster RL. Growth factors essential for self-renewal and expansion of mouse spermatogonial stem cells. Proc Natl Acad Sci USA 2004; 101: 16489–16494.

    Article  PubMed  CAS  Google Scholar 

  22. Meng X, Lindahl M, Hyvonen ME et al. Regulation of cell fate decision of undifferentiated spermatogonia by GDNF. Science 2000; 287: 1489–1493.

    Article  PubMed  CAS  Google Scholar 

  23. Yomogida K, Yagura Y, Tadokoro Y, Nishimune Y. Dramatic expansion of germinal stem cells by ectopically expressed human glial cell line-derived neurotrophic factor in mouse Sertoli cells. Biol Reprod 2003; 69: 1303–1307.

    Article  PubMed  CAS  Google Scholar 

  24. Tadokoro Y, Yomogida K, Ohta H, Tohda A, Nishimune Y. Homeostatic regulation of germinal stem cell proliferation by the GDNF/FSH pathway. Meek Dev 2002; 113: 29–39.

    Article  CAS  Google Scholar 

  25. Matzuk MM. Germ-line immortality. Proc Natl Acad Sci USA 2004; 101: 16395–16396.

    Article  PubMed  CAS  Google Scholar 

  26. Nagano M, Ryu BY, Brinster CJ, Avarbock MR, Brinster RL. Maintenance of mouse male germ line stem cells in vitro. Biol Reprod 2003; 68: 2207–2214.

    Article  PubMed  CAS  Google Scholar 

  27. Kanatsu-Shinohara M, Ogonuki N, Iwano T et al. Genetic and epigenetic properties of mouse male germline stem cells during long-term culture. Development 2005; 132: 4155–4163.

    Article  PubMed  CAS  Google Scholar 

  28. Ohmura M, Ogawa T, Ono M et al. Increment of murine spermatogonial cell number by gonadotropin-releasing hormone analogue is independent of stem cell factor c-kit signal. Biol Reprod 2003; 68: 2304–2313.

    Article  PubMed  CAS  Google Scholar 

  29. Kanatsu-Shinohara M, Miki H, Inoue K et al. Long-term culture of mouse male germline stem cells under serum-or feeder-free conditions. Biol Reprod 2005; 72: 985–991.

    Article  PubMed  CAS  Google Scholar 

  30. Ogawa T, Ohmura M, Tamura Y et al. Derivation and morphological characterization of mouse spermatogonial stem cell lines. Arch Histol Cytol 2004; 67: 297–306.

    Article  PubMed  Google Scholar 

  31. Fuchs E, Tumbar T, Guasch G. Socializing with the neighbors: stem cells and their niche. Cell 2004; 116: 769–778.

    Article  PubMed  CAS  Google Scholar 

  32. Staub C. A century of research on mammalian male germ cell meiotic differentiation in vitro. J Androl 2001; 22: 911–926.

    PubMed  CAS  Google Scholar 

  33. Steinberger A, Steinberger E. Factors affecting spermato-genesis in organ cultures of mammalian testes. J Reprod Fertil Supplement 1967; 2: 117–124.

    Google Scholar 

  34. Steinberger A, Steinberger E. Differentiation of rat seminiferous epithelium in organ culture. J Reprod Fertil 1965; 9: 243–248.

    PubMed  CAS  Google Scholar 

  35. Aizawa S, Nishimune Y. In vitro differentiation of type A spermatogonia in mouse cryptorchid testis. J Reprod Fertil 1979; 56: 99–104.

    PubMed  CAS  Google Scholar 

  36. Rassoulzadegan M, Paquis-Flucklinger V, Bertino B et al. Transmeiotic differentiation of male germ cells in culture. Cell 1993; 75: 997–1006.

    Article  PubMed  CAS  Google Scholar 

  37. Weiss M, Vigier M, Heu D et al. Pre and postmeiotic expression of male germ cell-specific genes throughout 2-week cocultures of rat germinal and Sertoli cells. Biol Reprod 1997; 57: 68–76.

    Article  PubMed  CAS  Google Scholar 

  38. Staub C, Hue D, Nicolle JC, Perrard-Sapori MH, Segretain D, Durand P. The whole meiotic process can occur in vitro in untransformed rat spermatogenic cells. Exp Cell Res 2000; 260: 85–95.

    Article  PubMed  CAS  Google Scholar 

  39. Toyooka Y, Tsunekawa N, Akasu R, Noce T. Embryonic stem cells can form germ cells in vitro. Proc Natl Acad Sci USA 2003; 100: 11457–11462.

    Article  PubMed  CAS  Google Scholar 

  40. Geijsen N, Horoschak M, Kim K, Gribnau J, Eggan K, Daley GQ. Derivation of embryonic germ cells and male gametes from embryonic stem cells. Nature 2004; 427: 148–154.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takehiko Ogawa.

About this article

Cite this article

Ogawa, T., Kita, K. & Kubota, Y. Proliferation of spermatogonial stem cells and spermatogenesis in vitro . Reprod Med Biol 5, 169–174 (2006). https://doi.org/10.1111/j.1447-0578.2006.00138.x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1111/j.1447-0578.2006.00138.x

Key words

Navigation