Skip to main content

Human sperm motility in a microgravity environment

Abstract

Background and Aims

We carried out clinostat and parabolic flight experiments to examine the effects of a microgravity (,uG) environment on human sperm motility.

Methods

Semen samples were obtained manually from 18 healthy men (aged 27.4 ± 5.4 years) who had given their informed consent. In dinostat experiments, samples that were left stationary were used as a stationary control. Samples rotated vertically and horizontally were used as a rotation control and a dinostat rotation, respectively. In parabolic flight experiments using a jet plane, sperm motility was compared for each parameter at μG, 1G and 2G. The state of 1G during the flight was used as a control. Sperm motility was determined using an automatic motility analyzer HT-M2030 in a microgravity environment.

Results

All parameters of sperm motility tended to be lower in dinostat rotation compared with rotation control at both low-speed and high-speed, but the differences were not statistically significant. In parabolic flight, sperm motility and parameters of linear movement were decreased (P< 0.05). There was no significant difference between μG and 2G, but sperm motility was significantly decreased at μG than at 1G.

Conclusions

Our findings suggest that sperm motility is reduced under μG.

This is a preview of subscription content, access via your institution.

References

  1. Kawasaki Y. How to generate artificial gravity on earth. The Tissue Culture 1989; 15: 210–213.

    Google Scholar 

  2. von Baumgarten RJ, Simmonds RC, Boyd JF, Garriott OK. Effects of prolonged weightlessness on the swimming pattern of fish aboard Skylab 3. Aviat Space Environ Med 1975; 46: 902–906.

    Google Scholar 

  3. Young RS, Deal PH, Souza KA, Whitfield O. Altered gravitational field effects on the fertilized frog egg. Cell Res 1970; 59: 267–271.

    Article  CAS  Google Scholar 

  4. Neff AW, Malacinski GM. Reversal of early pattern formation in inverted amphibian eggs. Physiologist 1982; 25: S119-S120.

    Google Scholar 

  5. Neubert J. Gravity sensing system formation in tadpoles (Rana temporaria) developed in weightlessness simulation. Physiologist 1981; 24: S81-S82.

    Google Scholar 

  6. Tremor JW, Souza KA. The influence of clinostat rotation on the fertilized amphibian egg. Space Life Sci 1972; 3: 179–191.

    PubMed  Article  CAS  Google Scholar 

  7. Nace GW, Tremor JW. Clinostat exposure and symmetrization of frog eggs. Physiologist 1981; 24: S77-S78.

    Google Scholar 

  8. Schatten H, Chakrabarti A, Taylor M et al. Effects of spaceflight conditions on fertilization and embryogenesis in the sea urchin Lytechinus pictus. Cell Biol Int 1999; 23: 407–415.

    PubMed  Article  CAS  Google Scholar 

  9. Souza KA, Black SD, Wassersug RJ. Amphibian development in the virtual absence of gravity. Proc Natl Acad Sci USA 1995; 92: 1975–1978.

    PubMed  Article  CAS  Google Scholar 

  10. Suda T. Lessons from the Space Experiment SL-J/FMPT/L7: The effect of microgravity on chicken embryogenesis and bone formation. Bone 1998; 22: 73S-78S.

    PubMed  Article  CAS  Google Scholar 

  11. Plakhuta-Plakutina GI, Serova LV, Dreval AA, Tarabrin SB. Effect of the 22-day space flight factors on the state of sex glands and reproductive function of rats. Kosm Biol Aviakosm Med 1976; 10: 40–46.

    PubMed  CAS  Google Scholar 

  12. Serova LV, Denisova LA, Apanasenko ZI, Kuznetsova MA, Meizerov ES. Reproductive function of the male rat after a flight on the Kosmos-1129 biosatellite. Kosm Biol Aviakosm Med 1982; 16: 62–65.

    PubMed  CAS  Google Scholar 

  13. Serova IV, Natochkin IV, Nosovskii AM, Shakhmatova EI, Fast T. Effect of weightlessness on the mother-fetus system (results of embryological experiment NIH-R1 aboard the ‘Space Shuttle’). Aero Environ Med 1996; 30: 4–8.

    CAS  Google Scholar 

  14. Engelmann U, Krassnigg F, Schill W-B. Sperm motility under conditions of weightlessness. J Androl 1992; 13: 433–436.

    PubMed  CAS  Google Scholar 

  15. Hoshi K, Nagaike F, Momono K et al. A ‘Layering Method’ to separate a population of good spermatozoa from semen sample. Jpn J Fertil Steril 1983; 28: 101–105.

    Google Scholar 

  16. Makler A. The improved ten-micrometer chamber for rapid sperm count and motility evaluation. Fertil Steril 1980; 33: 337–338.

    PubMed  CAS  Google Scholar 

  17. Sasaki S. Experimental and clinical studies on the white blood cells in semen. J Nagoya City University Med School 1992; 43: 765–782.

    Google Scholar 

  18. Philpott DE, Sapp W, Williams C, Fast T, Stevenson J, Black S. Reduction of spermatogonia and testosterone in rat testes flown on Space Laboratory-3. In: Bailey GW, ed. Proceedings of the 44th Annual Meeting of the Electron Microscopy Society of America. San Francisco Press, San Francisco, 1986: 248–249.

    Google Scholar 

  19. Plakhuta-Plakutina GI. State of spermatogenesis in rats flown aboard the biosatellite COSMOS-690. Aviat Space Environ Med 1977; 48: 12–15.

    PubMed  CAS  Google Scholar 

  20. Serova LV, Derrisova LA, Baikova OV. The effect of microgravity on the reproductive function of male-rats. Physiologist 1989; 32: S29-S30.

    PubMed  CAS  Google Scholar 

  21. Strollo F, Riondino G, Harris B et al. The effect of microgravity on testicular androgen secretion. Aviat Space Environ Med 1998; 69: 133–136.

    PubMed  CAS  Google Scholar 

  22. Yamashita M, Yamashita A, Yamada A. Three dimensional (3-D) dinostat and its operational characteristics. Biol Sci Space 1997; 11: 112–118.

    PubMed  Article  CAS  Google Scholar 

  23. Moore D, Cogoli A. Gravitational and space biology at the cellular level. In: Moore D, Bie P, Oser H, eds. Biological and medical research in space: an overview of life sciences research in microgravity, 4th edn. Springer-Verlag, Berlin, 1996: 1–106.

    Google Scholar 

  24. Hamazaki T, Sato K, Sato A. Effect of the movement of culture medium on cell growth under the clinorotated cells in culture. In: 11th ISAS Space Utilization Symposium. Institute of Space and Astronautical Science, Tokyo, 1994: 35–36.

    Google Scholar 

  25. Yanagimachi R. The movement of golden hamster spermatozoa before and after capacitation. J Reprod Fert 1970; 23: 193–196.

    CAS  Article  Google Scholar 

  26. Cogoli A, Valluchi-Morf M, Boh Ringer HR, Vanni MR, Muller M. The effect of hypogravity on human lymphocyte activation. Aviat Space Environ Med 1980; 51: 29–34.

    PubMed  CAS  Google Scholar 

  27. Cogoli A. The effect of hypogravity and hypergravity on cells of the immune system. J Leukoc Biol 1993; 54: 259–268.

    PubMed  CAS  Google Scholar 

  28. Pippia P. Activation signals of T lymphocyte in microgravity. J Biotechnol 1996; 46: 215–222.

    Article  Google Scholar 

  29. Cogoli A, Cogoli-Greuter M. Activation and proliferation of lymphocytes and other mammalian cells in microgravity. Adv Space Biol Med 1997; 6: 33–79.

    PubMed  Article  CAS  Google Scholar 

  30. Walther I, Pipia P, Meloni MA, Turrini F, Cogoli A. Stimulated microgravity inhibits the genetic expression of interleukin-2 and its activated T lymphocytes. FEBS Lett 1998; 436: 115–118.

    PubMed  Article  CAS  Google Scholar 

  31. Kojima Y, Sasaki S, Kubota Y, Ikeuchi T, Hayashi Y, Kohri K. Effects of simulated microgravity on mammalian fertilization and preimplantation embryonic development in vitro. Fertil Steril 2000; 74: 1142–1147.

    PubMed  Article  CAS  Google Scholar 

  32. Wolgemuth DJ, Grills GS. Early mammalian development under conditions of reorientation relative to the gravity vector. Physiologist 1985; 28: S75-S76.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahito Ikeuchi.

About this article

Cite this article

Ikeuchi, T., Sasaki, S., Umemoto, Y. et al. Human sperm motility in a microgravity environment. Reprod Med Biol 4, 161–167 (2005). https://doi.org/10.1111/j.1447-0578.2005.00092.x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1111/j.1447-0578.2005.00092.x

Key Words

  • dinostat
  • human sperm
  • microgravity
  • parabolic flight
  • sperm motility