Kawasaki Y. How to generate artificial gravity on earth. The Tissue Culture 1989; 15: 210–213.
Google Scholar
von Baumgarten RJ, Simmonds RC, Boyd JF, Garriott OK. Effects of prolonged weightlessness on the swimming pattern of fish aboard Skylab 3. Aviat Space Environ Med 1975; 46: 902–906.
Google Scholar
Young RS, Deal PH, Souza KA, Whitfield O. Altered gravitational field effects on the fertilized frog egg. Cell Res 1970; 59: 267–271.
Article
CAS
Google Scholar
Neff AW, Malacinski GM. Reversal of early pattern formation in inverted amphibian eggs. Physiologist 1982; 25: S119-S120.
Google Scholar
Neubert J. Gravity sensing system formation in tadpoles (Rana temporaria) developed in weightlessness simulation. Physiologist 1981; 24: S81-S82.
Google Scholar
Tremor JW, Souza KA. The influence of clinostat rotation on the fertilized amphibian egg. Space Life Sci 1972; 3: 179–191.
PubMed
Article
CAS
Google Scholar
Nace GW, Tremor JW. Clinostat exposure and symmetrization of frog eggs. Physiologist 1981; 24: S77-S78.
Google Scholar
Schatten H, Chakrabarti A, Taylor M et al. Effects of spaceflight conditions on fertilization and embryogenesis in the sea urchin Lytechinus pictus. Cell Biol Int 1999; 23: 407–415.
PubMed
Article
CAS
Google Scholar
Souza KA, Black SD, Wassersug RJ. Amphibian development in the virtual absence of gravity. Proc Natl Acad Sci USA 1995; 92: 1975–1978.
PubMed
Article
CAS
Google Scholar
Suda T. Lessons from the Space Experiment SL-J/FMPT/L7: The effect of microgravity on chicken embryogenesis and bone formation. Bone 1998; 22: 73S-78S.
PubMed
Article
CAS
Google Scholar
Plakhuta-Plakutina GI, Serova LV, Dreval AA, Tarabrin SB. Effect of the 22-day space flight factors on the state of sex glands and reproductive function of rats. Kosm Biol Aviakosm Med 1976; 10: 40–46.
PubMed
CAS
Google Scholar
Serova LV, Denisova LA, Apanasenko ZI, Kuznetsova MA, Meizerov ES. Reproductive function of the male rat after a flight on the Kosmos-1129 biosatellite. Kosm Biol Aviakosm Med 1982; 16: 62–65.
PubMed
CAS
Google Scholar
Serova IV, Natochkin IV, Nosovskii AM, Shakhmatova EI, Fast T. Effect of weightlessness on the mother-fetus system (results of embryological experiment NIH-R1 aboard the ‘Space Shuttle’). Aero Environ Med 1996; 30: 4–8.
CAS
Google Scholar
Engelmann U, Krassnigg F, Schill W-B. Sperm motility under conditions of weightlessness. J Androl 1992; 13: 433–436.
PubMed
CAS
Google Scholar
Hoshi K, Nagaike F, Momono K et al. A ‘Layering Method’ to separate a population of good spermatozoa from semen sample. Jpn J Fertil Steril 1983; 28: 101–105.
Google Scholar
Makler A. The improved ten-micrometer chamber for rapid sperm count and motility evaluation. Fertil Steril 1980; 33: 337–338.
PubMed
CAS
Google Scholar
Sasaki S. Experimental and clinical studies on the white blood cells in semen. J Nagoya City University Med School 1992; 43: 765–782.
Google Scholar
Philpott DE, Sapp W, Williams C, Fast T, Stevenson J, Black S. Reduction of spermatogonia and testosterone in rat testes flown on Space Laboratory-3. In: Bailey GW, ed. Proceedings of the 44th Annual Meeting of the Electron Microscopy Society of America. San Francisco Press, San Francisco, 1986: 248–249.
Google Scholar
Plakhuta-Plakutina GI. State of spermatogenesis in rats flown aboard the biosatellite COSMOS-690. Aviat Space Environ Med 1977; 48: 12–15.
PubMed
CAS
Google Scholar
Serova LV, Derrisova LA, Baikova OV. The effect of microgravity on the reproductive function of male-rats. Physiologist 1989; 32: S29-S30.
PubMed
CAS
Google Scholar
Strollo F, Riondino G, Harris B et al. The effect of microgravity on testicular androgen secretion. Aviat Space Environ Med 1998; 69: 133–136.
PubMed
CAS
Google Scholar
Yamashita M, Yamashita A, Yamada A. Three dimensional (3-D) dinostat and its operational characteristics. Biol Sci Space 1997; 11: 112–118.
PubMed
Article
CAS
Google Scholar
Moore D, Cogoli A. Gravitational and space biology at the cellular level. In: Moore D, Bie P, Oser H, eds. Biological and medical research in space: an overview of life sciences research in microgravity, 4th edn. Springer-Verlag, Berlin, 1996: 1–106.
Google Scholar
Hamazaki T, Sato K, Sato A. Effect of the movement of culture medium on cell growth under the clinorotated cells in culture. In: 11th ISAS Space Utilization Symposium. Institute of Space and Astronautical Science, Tokyo, 1994: 35–36.
Google Scholar
Yanagimachi R. The movement of golden hamster spermatozoa before and after capacitation. J Reprod Fert 1970; 23: 193–196.
CAS
Article
Google Scholar
Cogoli A, Valluchi-Morf M, Boh Ringer HR, Vanni MR, Muller M. The effect of hypogravity on human lymphocyte activation. Aviat Space Environ Med 1980; 51: 29–34.
PubMed
CAS
Google Scholar
Cogoli A. The effect of hypogravity and hypergravity on cells of the immune system. J Leukoc Biol 1993; 54: 259–268.
PubMed
CAS
Google Scholar
Pippia P. Activation signals of T lymphocyte in microgravity. J Biotechnol 1996; 46: 215–222.
Article
Google Scholar
Cogoli A, Cogoli-Greuter M. Activation and proliferation of lymphocytes and other mammalian cells in microgravity. Adv Space Biol Med 1997; 6: 33–79.
PubMed
Article
CAS
Google Scholar
Walther I, Pipia P, Meloni MA, Turrini F, Cogoli A. Stimulated microgravity inhibits the genetic expression of interleukin-2 and its activated T lymphocytes. FEBS Lett 1998; 436: 115–118.
PubMed
Article
CAS
Google Scholar
Kojima Y, Sasaki S, Kubota Y, Ikeuchi T, Hayashi Y, Kohri K. Effects of simulated microgravity on mammalian fertilization and preimplantation embryonic development in vitro. Fertil Steril 2000; 74: 1142–1147.
PubMed
Article
CAS
Google Scholar
Wolgemuth DJ, Grills GS. Early mammalian development under conditions of reorientation relative to the gravity vector. Physiologist 1985; 28: S75-S76.
PubMed
CAS
Google Scholar