Skip to main content

Advertisement

Log in

Role of reactive oxygen species in gynecologic diseases

  • Review Article
  • Published:
Reproductive Medicine and Biology

Abstract

Free radicals derived from molecular oxygen and nitrogen are highly reactive metabolites called reactive oxygen species (ROS). Cells continuously produce free radicals and ROS as part of the metabolic process. They are involved in the various functions of the reproductive system. Antioxidants are enzymes or compounds that scavenge and reduce the presence of free radicals. Normally, a balance exists between concentrations of reactive oxygen species and antioxidant scavenging systems. The disruption of the delicate balance between pro- and antioxidants results in oxidative stress. Oxidative stress has been implicated in embryo fragmentation, DNA damage, apoptosis and poor pregnancy outcome. It has also been implicated in a large number of gynecologic diseases, such as endometriosis, pre-eclampsia and maternal diabetes. The use of antioxidants may be beneficial in combating the harmful effects of oxidative stress in many of these diseases. The present review outlines the importance of these species in the pathology of various gynecologic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agarwal A, Saleh RA, Bedaiwy MA. Role of reactive oxygen species in the pathophysiology of human reproduction. Fertil Steril 2003; 79: 829–843.

    PubMed  Google Scholar 

  2. Halliwell B, Gutteridge JMC. The chemistry of oxygen radicals and other derived species. In: Halliwell B, Gutteridge JMC, eds. Free Radicals in Biology and Medicine, 2nd edn. Oxford: Clarendon Press, 1989; 22–85.

    Google Scholar 

  3. Guerin P, El Mouatassim S, Menezo Y. Oxidative stress and protection against reactive oxygen species in the preimplantation embryo and its surroundings. Hum Reprod Update 2001; 7: 175–189.

    PubMed  CAS  Google Scholar 

  4. Johnson MH, Nasr-Esfahani MH. Radical solutions and cultural problems: could free oxygen radicals be responsible for the impaired development of preimplantation mammalian embryos in vitro? Bioessays 1994; 16: 31–38.

    PubMed  CAS  Google Scholar 

  5. Murphy AA, Santanam N, Morales AJ, Parthasarathy S. Lysophosphatidyl choline, a chemotactic factor for monocytes/T-lymphocytes is elevated in endometriosis. J Clin Endocrinol Metab 1998; 83: 2110–2113.

    PubMed  CAS  Google Scholar 

  6. Agarwal A, Saleh RA. Role of oxidants in male infertility: rationale, significance, and treatment. Urol Clin North Am 2002; 29: 817–827.

    PubMed  Google Scholar 

  7. Sharma RK, Agarwal A. Role of reactive oxygen species in male infertility. Urology 1996; 48: 835–850.

    PubMed  CAS  Google Scholar 

  8. El Mouatassim S, Guerin P, Menezo Y. Mammalian oviduct and protection against free oxygen radicals: expression of genes encoding antioxidant enzymes in human and mouse. Eur J Obstet Gynecol Reprod Biol 2000; 89: 1–6.

    PubMed  Google Scholar 

  9. Agarwal A, Nallella KP, Allamaneni SS, Said TM. Role of antioxidants in treatment of male infertility: an overview of the literature. Reprod Biomed Online 2004; 8: 616–627.

    PubMed  CAS  Google Scholar 

  10. Sikka SC. Relative impact of oxidative stress on male reproductive function. Curr Med Chem 2001; 8: 851–862.

    PubMed  CAS  Google Scholar 

  11. Aitken RJ, Krausz C. Oxidative stress, DNA damage and the Y chromosome. Reproduction 2001; 122: 497–506.

    PubMed  CAS  Google Scholar 

  12. Saleh RA, Agarwal A. Oxidative stress and male infertility: from research bench to clinical practice. J Androl 2002; 23: 737–752.

    PubMed  CAS  Google Scholar 

  13. Saleh RA, Agarwal A, Nelson DR et al. Increased sperm nuclear DNA damage in normozoospermic infertile men: a prospective study. Fertil Steril 2002; 78: 313–318.

    PubMed  Google Scholar 

  14. Ames BN, Shigenaga MK, Hagen TM. Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci USA 1993; 90: 7915–7922.

    PubMed  CAS  Google Scholar 

  15. Fantel AG. Reactive oxygen species in developmental toxicity: review and hypothesis. Teratology 1996; 53: 196–217.

    PubMed  CAS  Google Scholar 

  16. Noda Y, Matsumoto H, Umaoka Y, Tatsumi K, Kishi J, Mori T. Involvement of superoxide radicals in the mouse two-cell block. Mol Reprod Dev 1991; 28: 356–360.

    PubMed  CAS  Google Scholar 

  17. Biswas S, Kabir SN, Pal AK. The role of nitric oxide in the process of implantation in rats. J Reprod Fertil 1998; 114: 157–161.

    PubMed  CAS  Google Scholar 

  18. Ornoy A, Kimyagarov D, Yaffee P, Abir R, Raz I, Kohen R. Role of reactive oxygen species in diabetes-induced embryotoxicity: studies on pre-implantation mouse embryos cultured in serum from diabetic pregnant women. Isr J Med Sci 1996; 32: 1066–1073.

    PubMed  CAS  Google Scholar 

  19. Tarin JJ. Potential effects of age-associated oxidative stress on mammalian oocytes/embryos. Mol Hum Reprod 1996; 2: 717–724.

    PubMed  CAS  Google Scholar 

  20. Loutradis D, John D, Kiessling AA. Hypoxanthine causes a 2-cell block in random-bred mouse embryos. Biol Reprod 1987; 37: 311–316.

    PubMed  CAS  Google Scholar 

  21. Downs SM, Dow MP. Hypoxanthine-maintained two-cell block in mouse embryos: dependence on glucose and effect of hypoxanthine phosphoribosyltransferase inhibitors. Biol Reprod 1991; 44: 1025–1039.

    PubMed  CAS  Google Scholar 

  22. Nasr-Esfahani MM, Johnson MH. The origin of reactive oxygen species in mouse embryos cultured in vitro. Development 1991; 113: 551–560.

    PubMed  CAS  Google Scholar 

  23. Manes C, Lai NC. Nonmitochondrial oxygen utilization by rabbit blastocysts and surface production of superoxide radicals. J Reprod Fertil 1995; 104: 69–75.

    PubMed  CAS  Google Scholar 

  24. Trimarchi JR, Liu L, Porterfield DM, Smith PJ, Keefe DL. Oxidative phosphorylation-dependent and -independent oxygen consumption by individual preimplantation mouse embryos. Biol Reprod 2000; 62: 1866–1874.

    PubMed  CAS  Google Scholar 

  25. Thompson JG, McNaughton C, Gasparrini B, McGowan LT, Tervit HR. Effect of inhibitors and uncouplers of oxidative phosphorylation during compaction and blastulation of bovine embryos cultured in vitro. J Reprod Fertil 2000; 118: 47–55.

    PubMed  CAS  Google Scholar 

  26. Goto Y, Noda Y, Mori T, Nakano M. Increased generation of reactive oxygen species in embryos cultured in vitro. Free Radic Biol Med 1993; 15: 69–75.

    PubMed  CAS  Google Scholar 

  27. Nasr-Esfahani MH, Johnson MH. How does transferrin overcome the in vitro block to development of the mouse preimplantation embryo? J Reprod Fertil 1992; 96: 41–48.

    PubMed  CAS  Google Scholar 

  28. Nasr-Esfahani MH, Winston NJ, Johnson MH. Effects of glucose, glutamine, ethylenediaminetetraacetic acid and oxygen tension on the concentration of reactive oxygen species and on development of the mouse preimplantation embryo in vitro. J Reprod Fertil 1992; 96: 219–231.

    PubMed  CAS  Google Scholar 

  29. Nasr-Esfahani M, Johnson MH, Aitken RJ. The effect of iron and iron chelators on the in-vitro block to development of the mouse preimplantation embryo: BAT6 a new medium for improved culture of mouse embryos in vitro. Hum Reprod 1990; 5: 997–1003.

    PubMed  CAS  Google Scholar 

  30. Beehler BC, Przybyszewski J, Box HB, Kulesz-Martin MF. Formation of 8-hydroxydeoxyguanosine within DNA of mouse keratinocytes exposed in culture to UVB and H2O2. Carcinogenesis 1992; 13: 2003–2007.

    PubMed  CAS  Google Scholar 

  31. Parchment RE, Lewellyn A, Swartzendruber D, Pierce GB. Serum amine oxidase activity contributes to crisis in mouse embryo cell lines. Proc Natl Acad Sci USA 1990; 87: 4340–4344.

    PubMed  CAS  Google Scholar 

  32. Alvarez JG, Minaretzis D, Barrett CB, Mortola JF, Thomp-son IE. The sperm stress test: a novel test that predicts pregnancy in assisted reproductive technologies. Fertil Steril 1996; 65: 400–405.

    PubMed  CAS  Google Scholar 

  33. Bilodeau JF, Blanchette S, Gagnon C, Sirard MA. Thiols prevent H2O2-mediated loss of sperm motility in cryopreserved bull semen. Theriogenology 2001; 56: 275–286.

    PubMed  CAS  Google Scholar 

  34. Hyslop PA, Hinshaw DB, Halsey WA Jr et al. Mechanisms of oxidant-mediated cell injury. The glycolytic and mitochondrial pathways of ADP phosphorylation are major intracellular targets inactivated by hydrogen peroxide. J Biol Chem 1988; 263: 1665–1675.

    PubMed  CAS  Google Scholar 

  35. Pierce GB, Parchment RE, Lewellyn AL. Hydrogen peroxide as a mediator of programmed cell death in the blastocyst. Differentiation 1991; 46: 181–186.

    PubMed  CAS  Google Scholar 

  36. Alvarez JG, Storey BT. Evidence for increased lipid peroxidative damage and loss of superoxide dismutase activity as a mode of sublethal cryodamage to human sperm during cryopreservation. J Androl 1992; 13: 232–241.

    PubMed  CAS  Google Scholar 

  37. Nasr-Esfahani MH, Aitken JR, Johnson MH. Hydrogen peroxide levels in mouse oocytes and early cleavage stage embryos developed in vitro or in vivo. Development 1990; 109: 501–507.

    PubMed  CAS  Google Scholar 

  38. Lopes S, Jurisicova A, Sun JG, Casper RF. Reactive oxygen species: potential cause for DNA fragmentation in human spermatozoa. Hum Reprod 1998; 13: 896–900.

    PubMed  CAS  Google Scholar 

  39. Kowaltowski AJ, Vercesi AE. Mitochondrial damage induced by conditions of oxidative stress. Free Radic Biol Med 1999; 26: 463–471.

    PubMed  CAS  Google Scholar 

  40. Taanman JW. The mitochondrial genome: structure, transcription, translation and replication. Biochim Biophys Acta 1999; 1410: 103–123.

    PubMed  CAS  Google Scholar 

  41. Blondin P, Coenen K, Sirard MA. The impact of reactive oxygen species on bovine sperm fertilizing ability and oocyte maturation. J Androl 1997; 18: 454–460.

    PubMed  CAS  Google Scholar 

  42. Morales H, Tilquin P, Rees JF, Massip A, Dessy F, Van Lan-gendonckt A. Pyruvate prevents peroxide-induced injury of in vitro preimplantation bovine embryos. Mol Reprod Dev 1999; 52: 149–157.

    PubMed  CAS  Google Scholar 

  43. Guerin P, Menezo Y. Hypotaurine and taurine in gamete and embryo environments: de novo synthesis via the cysteine sulfinic acid pathway in oviduct cells. Zygote 1995; 3: 333–343.

    PubMed  CAS  Google Scholar 

  44. El Mouatassim S, Guerin P, Menezo Y. Expression of genes encoding antioxidant enzymes in human and mouse oocytes during the final stages of maturation. Mol Hum Reprod 1999; 5: 720–725.

    PubMed  CAS  Google Scholar 

  45. Brinster RL. Uptake and incorporation of amino acids by the preimplantation mouse embryo. J Reprod Fertil 1971; 27: 329–338.

    PubMed  CAS  Google Scholar 

  46. Kaye PL, Schultz GA, Johnson MH, Pratt HP, Church RB. Amino acid transport and exchange in preimplantation mouse embryos. J Reprod Fertil 1982; 65: 367–380.

    PubMed  CAS  Google Scholar 

  47. Lewis AM, Kaye PL. Characterization of glutamine uptake in mouse two-cell embryos and blastocysts. J Reprod Fertil 1992; 95: 221–229.

    PubMed  CAS  Google Scholar 

  48. Chatot CL, Tasca RJ, Ziomek CA. Glutamine uptake and utilization by preimplantation mouse embryos in CZB medium. J Reprod Fertil 1990; 89: 335–346.

    PubMed  CAS  Google Scholar 

  49. Gardner DK, Lane M, Spitzer A, Batt PA. Enhanced rates of cleavage and development for sheep zygotes cultured to the blastocyst stage in vitro in the absence of serum and somatic cells: amino acids, vitamins, and culturing embryos in groups stimulate development. Biol Reprod 1994; 50: 390–400.

    PubMed  CAS  Google Scholar 

  50. Schweigert FJ, Zucker H. Concentrations of vitamin A, beta-carotene and vitamin E in individual bovine follicles of different quality. J Reprod Fertil 1988; 82: 575–579.

    PubMed  CAS  Google Scholar 

  51. Pascoe GA, Fariss MW, Olafsdottir K, Reed DJ. A role of vitamin E in protection against cell injury. Maintenance of intracellular glutathione precursors and biosynthesis. Eur J Biochem 1987; 166: 241–247.

    PubMed  CAS  Google Scholar 

  52. Fraga CG, Motchnik PA, Shigenaga MK, Heibock HJ, Jacob RA, Ames BN. Ascorbic acid protects against endogenous oxidative DNA damage in human sperm. Proc Natl Acad Sci USA 1991; 88: 11003–11006.

    PubMed  CAS  Google Scholar 

  53. Hansen C, Srikandakumar A, Downey BR. Presence of follicular fluid in the porcine oviduct and its contribution to the acrosome reaction. Mol Reprod Dev 1991; 30: 148–153.

    PubMed  CAS  Google Scholar 

  54. Paszkowski T, Clarke RN. The Graafian follicle is a site of L-ascorbate accumulation. J Assist Reprod Genet 1999; 16: 41–45.

    PubMed  CAS  Google Scholar 

  55. de Lamirande E, Gagnon C. Reactive oxygen species and human spermatozoa. II. Depletion of adenosine triphosphate plays an important role in the inhibition of sperm motility. J Androl 1992; 13: 379–386.

    PubMed  Google Scholar 

  56. Guerin P, Guillaud J, Menezo Y. Hypotaurine in spermatozoa and genital secretions and its production by oviduct epithelial cells in vitro. Hum Reprod 1995; 10: 866–872.

    PubMed  CAS  Google Scholar 

  57. Takahashi M, Nagai T, Hamano S, Kuwayama M, Oka-mura N, Okano A. Effect of thiol compounds on in vitro development and intracellular glutathione content of bovine embryos. Biol Reprod 1993; 49: 228–232.

    PubMed  CAS  Google Scholar 

  58. Gardiner CS, Reed DJ. Synthesis of glutathione in the preimplantation mouse embryo. Arch Biochem Biophys 1995; 318: 30–36.

    PubMed  CAS  Google Scholar 

  59. Yoshida M, Ishigaki K, Nagai T, Chikyu M, Pursei VG. Glutathione concentration during maturation and after fertilization in pig oocytes: relevance to the ability of oocytes to form male pronucleus. Biol Reprod 1993; 49: 89–94.

    PubMed  CAS  Google Scholar 

  60. Perreault SD, Barbee RR, Slott VL. Importance of glutathione in the acquisition and maintenance of sperm nuclear decondensing activity in maturing hamster oocytes. Dev Biol 1988; 125: 181–186.

    PubMed  CAS  Google Scholar 

  61. de Matos DG, Furnus CC. The importance of having high glutathione (GSH) level after bovine in vitro maturation on embryo development effect of beta-mercaptoethanol, cysteine and cystine. Theriogenology 2000; 53: 761–771.

    PubMed  Google Scholar 

  62. Luvoni GC, Keskintepe L, Brackett BG. Improvement in bovine embryo production in vitro by glutathione-containing culture media. Mol Reprod Dev 1996; 43: 437–443.

    PubMed  CAS  Google Scholar 

  63. Aruoma OI, Halliwell B, Hoey BM, Butler J. The antioxidant action of taurine, hypotaurine and their metabolic precursors. Biochem J 1988; 256: 251–255.

    PubMed  CAS  Google Scholar 

  64. Van Winkle LJ, Dickinson HR. Differences in amino acid content of preimplantation mouse embryos that develop in vitro versus in vivo: in vitro effects of five amino acids that are abundant in oviductal secretions. Biol Reprod 1995; 52: 96–104.

    PubMed  Google Scholar 

  65. Barnett DK, Bavister BD. Hypotaurine requirement for in vitro development of golden hamster one-cell embryos into morulae and blastocysts, and production of term offspring from in vitro-fertilized ova. Biol Reprod 1992; 47: 297–304.

    PubMed  CAS  Google Scholar 

  66. Dumoulin JC, Evers JL, Bras M, Pieters MH, Geraedts JP. Positive effect of taurine on preimplantation development of mouse embryos in vitro. J Reprod Fertil 1992; 94: 373–380.

    PubMed  CAS  Google Scholar 

  67. Li J, Foote RH, Simkin M. Development of rabbit zygotes cultured in protein-free medium with catalase, taurine, or superoxide dismutase. Biol Reprod 1993; 49: 33–37.

    PubMed  CAS  Google Scholar 

  68. Guyader-Joly C, Guerin P, Renard JP, Guillaud J, Ponchon S, Menezo Y. Precursors of taurine in female genital tract: effects on developmental capacity of bovine embryo produced in vitro. Amino Acids 1998; 15: 27–42.

    PubMed  CAS  Google Scholar 

  69. Grupen CG, Nagashima H, Nottle MB. Cysteamine enhances in vitro development of porcine oocytes matured and fertilized in vitro. Biol Reprod 1995; 53: 173–178.

    PubMed  CAS  Google Scholar 

  70. de Matos DG, Furnus CC, Moses DF, Baldassarre H. Effect of cysteamine on glutathione level and developmental capacity of bovine oocyte matured in vitro. Mol Reprod Dev 1995; 42: 432–436.

    PubMed  Google Scholar 

  71. Lapointe S, Sullivan R, Sirard MA. Binding of a bovine oviductal fluid catalase to mammalian spermatozoa. Biol Reprod 1998; 58: 747–753.

    PubMed  CAS  Google Scholar 

  72. Forsberg H, Borg LA, Cagliero E, Eriksson UJ. Altered levels of scavenging enzymes in embryos subjected to a diabetic environment. Free Radic Res 1996; 24: 451–459.

    PubMed  CAS  Google Scholar 

  73. Paynton BV, Bachvarova R. Polyadenylation and deadenylation of maternal mRNAs during oocyte growth and maturation in the mouse. Mol Reprod Dev 1994; 37: 172–180.

    PubMed  CAS  Google Scholar 

  74. Matsuda Y, Tobari I. Repair capacity of fertilized mouse eggs for X-ray damage induced in sperm and mature oocytes. Mutat Res 1989; 210: 35–47.

    PubMed  CAS  Google Scholar 

  75. Ashwood-Smith MJ, Edwards RG. DNA repair by oocytes. Mol Hum Reprod 1996; 2: 46–51.

    PubMed  CAS  Google Scholar 

  76. Liu L, Keefe DL. Cytoplasm mediates both development and oxidation-induced apoptotic cell death in mouse zygotes. Biol Reprod 2000; 62: 1828–1834.

    PubMed  CAS  Google Scholar 

  77. Barritt JA, Brenner CA, Cohen J, Matt DW. Mitochondrial DNA rearrangements in human oocytes and embryos. Mol Hum Reprod 1999; 5: 927–933.

    PubMed  CAS  Google Scholar 

  78. Paszkowski T, Traub AT, Robinson SY, McMaster D. Selenium dependent glutathione peroxidase activity in human follicular fluid. Clin Chim Acta 1995; 236: 173–180.

    PubMed  CAS  Google Scholar 

  79. Sabatini L, Wilson C, Lower A, Al-Shawaf T, Grudzinskas JG. Superoxide dismutase activity in human follicular fluid after controlled ovarian hyperstimulation in women undergoing in vitro fertilization. Fertil Steril 1999; 72: 1027–1034.

    PubMed  CAS  Google Scholar 

  80. Ji BT, Shu XO, Linet MS et al. Paternal cigarette smoking and the risk of childhood cancer among offspring of nonsmoking mothers. J Natl Cancer Inst 1997; 89: 238–244.

    PubMed  CAS  Google Scholar 

  81. Sun JG, Jurisicova A, Casper RF. Detection of deoxyribonucleic acid fragmentation in human sperm: correlation with fertilization in vitro. Biol Reprod 1997; 56: 602–607.

    PubMed  CAS  Google Scholar 

  82. Tarin JJJ, Vendrell FJ, Cano A. Dithiothreitol prevents ageassociated decrease in oocyte/conceptus viability in vitro. Hum Reprod 1998; 13: 381–386.

    PubMed  CAS  Google Scholar 

  83. Tarin JJ, Ten Vendrell FJJ, Cano A. Antioxidant therapy counteracts the disturbing effects of diamide and maternal ageing on meiotic division and chromosomal segregation in mouse oocytes. Mol Hum Reprod 1998; 4: 281–288.

    PubMed  CAS  Google Scholar 

  84. Zuelke KA, Jones DP, Perreault SD. Glutathione oxidation is associated with altered microtubule function and disrupted fertilization in mature hamster oocytes. Biol Reprod 1997; 57: 1413–1419.

    PubMed  CAS  Google Scholar 

  85. Gardiner CS, Reed DJ. Status of glutathione during oxidantinduced oxidative stress in the preimplantation mouse embryo. Biol Reprod 1994; 51: 1307–1314.

    PubMed  CAS  Google Scholar 

  86. Hockenbery DM, Oltvai ZN, Yin XM, Milliman CL, Korsmeyer SJ. Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell 1993; 75: 241–251.

    PubMed  CAS  Google Scholar 

  87. Jacobson MD, Weil M, Raff MC. Programmed cell death in animal development. Cell 1997; 88: 347–354.

    PubMed  CAS  Google Scholar 

  88. Takase K, Ishikawa M, Hoshiai H. Apoptosis in the degeneration process of unfertilized mouse ova. Tohoku J Exp Med 1995; 175: 69–76.

    PubMed  CAS  Google Scholar 

  89. Brison DR, Schultz RM. Apoptosis during mouse blastocyst formation: evidence for a role for survival factors including transforming growth factor alpha. Biol Reprod 1997; 56: 1088–1096.

    PubMed  CAS  Google Scholar 

  90. Liu L, Trimarchi JR, Keefe DL. Thiol oxidation-induced embryonic cell death in mice is prevented by the antioxidant dithiothreitol. Biol Reprod 1999; 61: 1162–1169.

    PubMed  CAS  Google Scholar 

  91. Plachot M, Mandelbaum J. Oocyte maturation, fertilization and embryonic growth in vitro. Br Med Bull 1990; 46: 675–694.

    PubMed  CAS  Google Scholar 

  92. Erenus M, Zouves C, Rajamahendran P, Leung S, Fluker M, Gomel V. The effect of embryo quality on subsequent pregnancy rates after in vitro fertilization. Fertil Steril 1991; 56: 707–710.

    PubMed  CAS  Google Scholar 

  93. Jurisicova A, Varmuza S, Casper RF. Programmed cell death and human embryo fragmentation. Mol Hum Reprod 1996; 2: 93–98.

    PubMed  CAS  Google Scholar 

  94. Yang HW, Hwang KJ, Kwon HC, Kim HS, Choi KW, Oh KS. Detection of reactive oxygen species (ROS) and apoptosis in human fragmented embryos. Hum Reprod 1998; 13: 998–1002.

    PubMed  CAS  Google Scholar 

  95. Ahmadi A, Ng SC. Fertilizing ability of DNA-damaged spermatozoa. J Exp Zool 1999; 284: 696–704.

    PubMed  CAS  Google Scholar 

  96. Ahmadi A, Ng SC. Destruction of protamine in human sperm inhibits sperm binding and penetration in the zona-free hamster penetration test but increases sperm head decondensation and male pronuclear formation in the hamster-ICSI assay. J Assist Reprod Genet 1999; 16: 128–132.

    PubMed  CAS  Google Scholar 

  97. Ahmadi A, Ng SC. Developmental capacity of damaged spermatozoa. Hum Reprod 1999; 14: 2279–2285.

    PubMed  CAS  Google Scholar 

  98. Evenson DP, Jost LK, Marshall D et al. Utility of the sperm chromatin structure assay as a diagnostic and prognostic tool in the human fertility clinic. Hum Reprod 1999; 14: 1039–1049.

    PubMed  CAS  Google Scholar 

  99. Spano M, Bonde JP, Hjollund HI, Kolstad HA, Cordelli E, Leter G. Sperm chromatin damage impairs human fertility. The Danish First Pregnancy Planner Study Team. Fertil Steril 2000; 73: 43–50.

    PubMed  CAS  Google Scholar 

  100. Tomsu M, Sharma V, Miller D. Embryo quality and IVF treatment outcomes may correlate with different sperm comet assay parameters. Hum Reprod 2002; 17: 1856–1862.

    PubMed  CAS  Google Scholar 

  101. Morris ID, Ilott S, Dixon L, Brison DR. The spectrum of DNA damage in human sperm assessed by single cell gel electrophoresis (Comet assay) and its relationship to fertilization and embryo development. Hum Reprod 2002; 17: 990–998.

    PubMed  CAS  Google Scholar 

  102. Sakkas D, Urner F, Bizzaro D et al. Sperm nuclear DNA damage and altered chromatin structure: effect on fertilization and embryo development. Hum Reprod 1998; 13 (Suppl 4): 11–19.

    PubMed  Google Scholar 

  103. Twigg JP, Irvine DS, Aitken RJ. Oxidative damage to DNA in human spermatozoa does not preclude pronudeus formation at intracytoplasmic sperm injection. Hum Reprod 1998; 13: 1864–1871.

    PubMed  CAS  Google Scholar 

  104. McPherson S, Longo FJ. Chromatin structure-function alterations during mammalian spermatogenesis: DNA nicking and repair in elongating spermatids. Eur J Histochem 1993; 37: 109–128.

    PubMed  CAS  Google Scholar 

  105. Manicardi GC, Bianchi PG, Pantano S et al. Presence of endogenous nicks in DNA of ejaculated human spermatozoa and its relationship to chromomycin A3 accessibility. Biol Reprod 1995; 52: 864–867.

    PubMed  CAS  Google Scholar 

  106. Sakkas D, Mariethoz E, Manicardi G, Bizzaro D, Bianchi PG, Bianchi U. Origin of DNA damage in ejaculated human spermatozoa. Rev Reprod 1999; 4: 31–37.

    PubMed  CAS  Google Scholar 

  107. Kemal Duru N, Morshedi M, Oehninger S. Effects of hydrogen peroxide on DNA and plasma membrane integrity of human spermatozoa. Fertil Steril 2000; 74: 1200–1207.

    Google Scholar 

  108. Sanchez R, Stalf T, Khanaga O, Turley H, Gips H, Schill WB. Sperm selection methods for intracytoplasmic sperm injection (ICSI) in andrological patients. J Assist Reprod Genet 1996; 13: 228–233.

    PubMed  CAS  Google Scholar 

  109. Jones GM, Trounson AO, Lolatgis N, Wood C. Factors affecting the success of human blastocyst development and pregnancy following in vitro fertilization and embryo transfer. Fertil Steril 1998; 70: 1022–1029.

    PubMed  CAS  Google Scholar 

  110. Janny L, Menezo YJ. Evidence for a strong paternal effect on human preimplantation embryo development and blastocyst formation. Mol Reprod Dev 1994; 38: 36–42.

    PubMed  CAS  Google Scholar 

  111. Miller JE, Smith TT. The effect of intracytoplasmic sperm injection and semen parameters on blastocyst development in vitro. Hum Reprod 2001; 16: 918–924.

    PubMed  CAS  Google Scholar 

  112. Dumoulin JM, Coonen E, Bras M et al. Embryo development and chromosomal anomalies after ICSI. effect of the injection procedure. Hum Reprod 2001; 16: 306–312.

    PubMed  CAS  Google Scholar 

  113. Shoukir Y, Chardonnens D, Campana A, Sakkas D. Blastocyst development from supernumerary embryos after intracytoplasmic sperm injection: a paternal influence? Hum Reprod 1998; 13: 1632–1637.

    PubMed  CAS  Google Scholar 

  114. Banerjee S, Lamond S, McMahon A, Campbell S, Nargund G. Does blastocyst culture eliminate paternal chromosomal defects and select good embryos?: inheritance of an abnormal paternal genome following ICSI. Hum Reprod 2000; 15: 2455–2459.

    PubMed  CAS  Google Scholar 

  115. Irvine DS, Twigg JP, Gordon EL, Fulton N, Milne PA, Aitken RJ. DNA integrity in human spermatozoa: relationships with semen quality. J Androl 2000; 21: 33–44.

    PubMed  CAS  Google Scholar 

  116. Larson KL, DeJonge CJ, Barnes AM, Jost LK, Evenson DP. Sperm chromatin structure assay parameters as predictors of failed pregnancy following assisted reproductive techniques. Hum Reprod 2000; 15: 1717–1722.

    PubMed  CAS  Google Scholar 

  117. Larson-Cook KL, Brannian JD, Hansen KA, Kasperson KM, Aamold ET, Evenson DP. Relationship between the outcomes of assisted reproductive techniques and sperm DNA fragmentation as measured by the sperm chromatin structure assay. Fertil Steril 2003; 80: 895–902.

    PubMed  Google Scholar 

  118. Agarwal A, Said TM. Role of sperm chromatin abnormalities and DNA damage in male infertility. Hum Reprod Update 2003; 9: 331–345.

    PubMed  CAS  Google Scholar 

  119. Sakkas D, Urner F, Bianchi PG et al. Sperm chromatin anomalies can influence decondensation after intracytoplasmic sperm injection. Hum Reprod 1996; 11: 837–843.

    PubMed  CAS  Google Scholar 

  120. Benchaib M, Braun V, Lornage J et al. Sperm DNA fragmentation decreases the pregnancy rate in an assisted reproductive technique. Hum Reprod 2003; 18: 1023–1028.

    PubMed  Google Scholar 

  121. Duran EH, Morshedi M, Taylor S, Oehninger S. Sperm DNA quality predicts intrauterine insemination outcome: a prospective cohort study. Hum Reprod 2002; 17: 3122–3128.

    PubMed  CAS  Google Scholar 

  122. Sharma RK, Said T, Agarwal A. Sperm DNA damage and its clinical relevance in assessing reproductive outcome. Asian J Androl 2004; 6: 139–148.

    PubMed  CAS  Google Scholar 

  123. Virro MR, Larson-Cook KL, Evenson DP. Sperm chromatin structure assay (SCSA) parameters are related to fertilization, blastocyst development, and ongoing pregnancy in in vitro fertilization and intracytoplasmic sperm injection cycles. Fertil Steril 2004; 81: 1289–1295.

    PubMed  Google Scholar 

  124. Gandini L, Lombardo F, Paoli D et al. Full-term pregnancies achieved with ICSI despite high levels of sperm chromatin damage. Hum Reprod 2004; 19: 1409–1417.

    PubMed  CAS  Google Scholar 

  125. Lopes S, Sun JG, Jurisicova A, Meriano J, Casper RF. Sperm deoxyribonudeic acid fragmentation is increased in poor-quality semen samples and correlates with failed fertilization in intracytoplasmic sperm injection. Fertil Steril 1998; 69: 528–532.

    PubMed  CAS  Google Scholar 

  126. Host E, Lindenberg S, Smidt-Jensen S. The role of DNA strand breaks in human spermatozoa used for IVF and ICSI. Acta Obstet Gynecol Scand 2000; 79: 559–563.

    PubMed  CAS  Google Scholar 

  127. Tomlinson MJ, Moffatt O, Manicardi GC, Bizzaro D, Afnan M, Sakkas D. Interrelationships between seminal parameters and sperm nuclear DNA damage before and after density gradient centrifugation: implications for assisted conception. Hum Reprod 2001; 16: 2160–2165.

    PubMed  CAS  Google Scholar 

  128. Raman RS, Chan PJ, Corselli Ju et al. Comet assay of cumulus cell DNA status and the relationship to oocyte fertilization via intracytoplasmic sperm injection. Hum Reprod 2001; 16: 831–835.

    PubMed  CAS  Google Scholar 

  129. Saleh RA, Agarwal A, Nada EA et al. Negative effects of increased sperm DNA damage in relation to seminal oxidative stress in men with idiopathic and male factor infertility. Fertil Steril 2003; 79 (Suppl 3): 1597–1605.

    PubMed  Google Scholar 

  130. Bungum M, Humaidan P, Spano M, Jepson K, Bungum L, Giwercman A. The predictive value of sperm chromatin structure assay (SCSA) parameters for the outcome of intrauterine insemination, IVF and ICSI. Hum Reprod 2004; 19: 1401–1408.

    PubMed  CAS  Google Scholar 

  131. Wang W, Pang CC, Rogers MS, Chang AM. Lipid peroxidation in cord blood at birth. Am J Obstet Gynecol 1996; 174: 62–65.

    PubMed  CAS  Google Scholar 

  132. Rogers MS, Mongelli JM, Tsang KH, Wang CC, Law KP. Lipid peroxidation in cord blood at birth: the effect of labour. Br J Obstet Gynaecol 1998; 105: 739–744.

    PubMed  CAS  Google Scholar 

  133. Guarnaccia MM, Takami M, Jones EE, Preston SL, Behr-man HR. Luteinizing hormone depletes ascorbic acid in preovulatory follicles. Fertil Steril 2000; 74: 959–963.

    PubMed  CAS  Google Scholar 

  134. Kramer MM, Harmon MT, Brill AK. Disturbances of reproduction and ovarian changes in the guinea pig in relation to vitamin C deficiency. Am J Physiol 1933; 106: 611–622.

    CAS  Google Scholar 

  135. Musicki B, Kodaman PH, Aten RF, Behrman HR. Endocrine regulation of ascorbic acid transport and secretion in luteal cells. Biol Reprod 1996; 54: 399–406.

    PubMed  CAS  Google Scholar 

  136. Briggs DA, Sharp DJ, Miller D, Gosden RG. Transferrin in the developing ovarian follicle: evidence for de-novo expression by granulosa cells. Mol Hum Reprod 1999; 5: 1107–1114.

    PubMed  CAS  Google Scholar 

  137. Jozwik M, Wolczynski S, Szamatowicz M. Oxidative stress markers in preovulatory follicular fluid in humans. Mol Hum. Reprod 1999; 5: 409–413.

    PubMed  CAS  Google Scholar 

  138. Attaran M, Pasqualotto E, Falcone T et al. The effect of follicular fluid reactive oxygen species on the outcome of in vitro fertilization. Int J Fertil Womens Med 2000; 45: 314–320.

    PubMed  CAS  Google Scholar 

  139. Pasqualotto EB, Agarwal A, Sharma RK et al. Effect of oxidative stress in follicular fluid on the outcome of assisted reproductive procedures. Fertil Steril 2004; 81: 973–976.

    PubMed  CAS  Google Scholar 

  140. Burlingame JM, Esfandiari N, Sharma RK, Mascha E, Falcone T. Total antioxidant capacity and reactive oxygen species in amniotic fluid. Obstet Gynecol 2003; 101: 756–761.

    PubMed  CAS  Google Scholar 

  141. Lappas M, Permezel M, Rice GE. N-Acetyl-cysteine inhibits phospholipid metabolism, proinflammatory cytokine release, protease activity, and nuclear factor-kappaB deoxyribonucleic acid-binding activity in human fetal membranes in vitro. J Clin Endocrinol Metab 2003; 88: 1723–1729.

    PubMed  CAS  Google Scholar 

  142. Woods JR Jr. Reactive oxygen species and preterm premature rupture of membranes-a review. Placenta 2001; 22 (Suppl A): S38-S44.

    PubMed  Google Scholar 

  143. Brandt E. Smoking and reproductive health. In: Rosenberg J, ed. Smoking and Reproductive Health. Litterton: PSG Publications, 1987, 1–23.

    Google Scholar 

  144. Frei B, Forte TM, Ames BN, Cross CE. Gas phase oxidants of cigarette smoke induce lipid peroxidation and changes in lipoprotein properties in human blood plasma. Protective effects of ascorbic acid. Biochem J 1991; 277 (Pt 1): 133–138.

    PubMed  CAS  Google Scholar 

  145. Paszkowski T, Clarke RN, Hornstein MD. Smoking induces oxidative stress inside the Graafian follicle. Hum Reprod 2002; 17: 921–925.

    PubMed  CAS  Google Scholar 

  146. Palan PR, Cohen BL, Barad DH, Romney SL. Effects of smoking on the levels of antioxidant beta carotene, alpha tocopherol and retinol in human ovarian follicular fluid. Gynecol Obstet Invest 1995; 39: 43–46.

    PubMed  CAS  Google Scholar 

  147. Zhou JF, Yan XF, Guo FZ, Sun NY, Qian ZJ, Ding DY. Effects of cigarette smoking and smoking cessation on plasma constituents and enzyme activities related to oxidative stress. Biomed Environ Sci 2000; 13: 44–55.

    PubMed  CAS  Google Scholar 

  148. Yang Q, Sherman SL, Hassold TJ et al. Risk factors for trisomy 21: maternal cigarette smoking and oral contraceptive use in a population-based case-control study. Genet Med 1999; 1: 80–88.

    PubMed  CAS  Google Scholar 

  149. Takehara Y, Yoshioka T, Sasaki J. Changes in the levels of lipoperoxide and antioxidant factors in human placenta during gestation. Acta Med Okayama 1990; 44: 103–111.

    PubMed  CAS  Google Scholar 

  150. Little RE, Gladen BC. Levels of lipid peroxides in uncomplicated pregnancy: a review of the literature. Reprod Toxicol 1999; 13: 347–352.

    PubMed  CAS  Google Scholar 

  151. Walsh SW, Wang Y. Secretion of lipid peroxides by the human placenta. Am J Obstet Gynecol 1993; 169: 1462–1466.

    PubMed  CAS  Google Scholar 

  152. Diamant S, Kissilevitz R, Diamant Y. Lipid peroxidation system in human placental tissue: general properties and the influence of gestational age. Biol Reprod 1980; 23: 776–781.

    PubMed  CAS  Google Scholar 

  153. Ishihara M. Studies on lipoperoxide of normal pregnant women and of patients with toxemia of pregnancy. Clin Chim Acta 1978; 84: 1–9.

    PubMed  CAS  Google Scholar 

  154. Cranfield LM, Gollan JL, White AG, Dormandy TL. Serum antioxidant activity in normal and abnormal subjects. Ann Clin Biochem 1979; 16: 299–306.

    PubMed  CAS  Google Scholar 

  155. Jagadeesan V, Prema K. Plasma tocopherol and lipid levels in pregnancy and oral contraceptive users. Br J Obstet Gynaecol 1980; 87: 903–907.

    PubMed  CAS  Google Scholar 

  156. Wang YP, Walsh SW, Guo JD, Zhang JY. Maternal levels of prostacyclin, thromboxane, vitamin E, and lipid peroxides throughout normal pregnancy. Am J Obstet Gynecol 1991; 165: 1690–1694.

    PubMed  CAS  Google Scholar 

  157. Wickens D, Wilkins MH, Lunec J, Ball G, Dormandy TL. Free radical oxidation (peroxidation) products in plasma in normal and abnormal pregnancy. Ann Clin Biochem 1981; 18: 158–162.

    PubMed  CAS  Google Scholar 

  158. Uotila J, Tuimala R, Aarnio T, Pyykko K, Ahotupa M. Lipid peroxidation products, selenium-dependent glutathione peroxidase and vitamin E in normal pregnancy. Eur J Obstet Gynecol Reprod Biol 1991; 42: 95–100.

    PubMed  CAS  Google Scholar 

  159. Woods JR Jr, Cavanaugh JL, Norkus EP, Plessinger MA, Miller RK. The effect of labor on maternal and fetal vitamins C and E. Am J Obstet Gynecol 2002; 187: 1179–1183.

    PubMed  CAS  Google Scholar 

  160. Park E, Wagenbichler P, Elmadfa I. Effects of multivitamin/mineral supplementation, at nutritional doses, on plasma antioxidant status and DNA damage estimated by sister chromatid exchanges in lymphocytes in pregnant women. Int J Vitam Nutr Res 1999; 69: 396–402.

    PubMed  CAS  Google Scholar 

  161. Lagod L, Paszkowski T, Sikorski R, Rola R. [The antioxidant-prooxidant balance in pregnancy complicated by spontaneous abortion]. Ginekol Pol 2001; 72: 1073–1078.

    PubMed  CAS  Google Scholar 

  162. Peiker G, Dawczynski H, Winnefeld K, Michels W, See-wald HJ. [Levels of antioxidants after cesarean section and administration of Multibionta N, Inzolen and selenase]. Med Klin (Munich) 1997; 92 (Suppl 3): 34–35.

    CAS  Google Scholar 

  163. Balasch J, Creus M, Fabregues F et al. Visible and nonvisible endometriosis at laparoscopy in fertile and infertile women and in patients with chronic pelvic pain: a prospective study. Hum Reprod 1996; 11: 387–391.

    PubMed  CAS  Google Scholar 

  164. Parazzini F, Di Cintio E, Chatenoud L, Moroni S, Mezzan-otte C, Crosignani PG. Oral contraceptive use and risk of endometriosis. Italian Endometriosis Study Group. Br J Obstet Gynaecol 1999; 106: 695–699.

    PubMed  CAS  Google Scholar 

  165. Eskenazi B, Warner ML. Epidemiology of endometriosis. Obstet Gynecol Clin North Am 1997; 24: 235–258.

    PubMed  CAS  Google Scholar 

  166. Daya S. Endometriosis and spontaneous abortion. In: Coutinho EM, de Moura LH, eds. Progress in the Management of Endometriosis. New York: Parthenon, 1995; 61–68.

    Google Scholar 

  167. Haney AF, Muscato JJ, Weinberg JB. Peritoneal fluid cell populations in infertility patients. Fertil Steril 1981; 35: 696–698.

    PubMed  CAS  Google Scholar 

  168. Ota H, Igarashi S, Hatazawa J, Tanaka T. Immunohistochemical assessment of superoxide dismutase expression in the endometrium in endometriosis and adenomyosis. Fertil Steril 1999; 72: 129–134.

    PubMed  CAS  Google Scholar 

  169. Ota H, Igarashi S. Expression of major histocompatibility complex class II antigen in endometriotic tissue in patients with endometriosis and adenomyosis. Fertil Steril 1993; 60: 834–838.

    PubMed  CAS  Google Scholar 

  170. Van Langendonckt A, Casanas-Roux F, Donnez J. Oxidative stress and peritoneal endometriosis. Fertil Steril 2002; 77: 861–870.

    PubMed  Google Scholar 

  171. Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA 1990; 87: 1620–1624.

    PubMed  CAS  Google Scholar 

  172. Gleicher N, El-Roeiy A, Confino E, Friberg J. Is endometriosis an autoimmune disease? Obstet Gynecol 1987; 70: 115–122.

    PubMed  CAS  Google Scholar 

  173. Zeller JM, Henig I, Radwanska E, Dmowski WP. Enhancement of human monocyte and peritoneal macrophage chemiluminescence activities in women with endometriosis. Am J Reprod Immunol Microbiol 1987; 13: 78–82.

    PubMed  CAS  Google Scholar 

  174. Arumugam K, Dip YC. Endometriosis and infertility: the role of exogenous lipid peroxides in the peritoneal fluid. Fertil Steril 1995; 63: 198–199.

    PubMed  CAS  Google Scholar 

  175. Ho HN, Wu MY, Chen SU, Chao KH, Chen CD, Yang YS. Total antioxidant status and nitric oxide do not increase in peritoneal fluids from women with endometriosis. Hum Reprod 1997; 12: 2810–2815.

    PubMed  CAS  Google Scholar 

  176. Wang Y, Sharma RK, Falcone T, Goldberg J, Agarwal A. Importance of reactive oxygen species in the peritoneal fluid of women with endometriosis or idiopathic infertility. Fertil Steril 1997; 68: 826–830.

    PubMed  CAS  Google Scholar 

  177. Polak G, Koziol-Montewka M, Tarkowski R, Kotarski J. [Peritoneal fluid and plasma 4-hydroxynonenal and malonyldialdehyde concentrations in infertile women]. Ginekol Pol 2001; 72: 1316–1320.

    PubMed  CAS  Google Scholar 

  178. Ota H, Igarashi S, Tanaka T. Xanthine oxidase in eutopic and ectopic endometrium in endometriosis and adenomyosis. Fertil Steril 2001; 75: 785–790.

    PubMed  CAS  Google Scholar 

  179. Arumugam K, Yip YC. De novo formation of adhesions in endometriosis: the role of iron and free radical reactions. Fertil Steril 1995; 64: 62–64.

    PubMed  CAS  Google Scholar 

  180. Ota H, Igarashi S, Hatazawa J, Tanaka T. Endothelial nitric oxide synthase in the endometrium during the menstrual cycle in patients with endometriosis and adenomyosis. Fertil Steril 1998; 69: 303–308.

    PubMed  CAS  Google Scholar 

  181. Ota H, Igarashi S, Kato N, Tanaka T. Aberrant expression of glutathione peroxidase in eutopic and ectopic endometrium in endometriosis and adenomyosis. Fertil Steril 2000; 74: 313–318.

    PubMed  CAS  Google Scholar 

  182. Murphy AA, Palinski W, Rankin S, Morales AJ, Parthasar-athy S. Evidence for oxidatively modified lipid-protein complexes in endometrium and endometriosis. Fertil Steril 1998; 69: 1092–1094.

    PubMed  CAS  Google Scholar 

  183. Salonen JT, Yla-Herttuala S et al. Autoantibody against oxidised LDL and progression of carotid atherosclerosis. Lancet 1992; 339: 883–887.

    PubMed  CAS  Google Scholar 

  184. Yamamoto T, Yoshimura S, Geshi Y et al. Measurement of antiphospholipid antibody by ELISA using purified beta 2-glycoprotein I in preeclampsia. Clin Exp Immunol 1993; 94: 196–200.

    PubMed  CAS  Google Scholar 

  185. Bergmark C, Wu R, de Faire U, Lefvert AK, Swedenborg J. Patients with early-onset peripheral vascular disease have increased levels of autoantibodies against oxidized LDL. Arterioscler Thromb Vasc Biol 1995; 15: 441–445.

    PubMed  CAS  Google Scholar 

  186. Shanti A, Santanam N, Morales AJ, Parthasarathy S, Murphy AA. Autoantibodies to markers of oxidative stress are elevated in women with endometriosis. Fertil Steril 1999; 71: 1115–1118.

    PubMed  CAS  Google Scholar 

  187. Murphy AA, Palinski W, Rankin S, Morales AJ, Parthasar-athy S. Macrophage scavenger receptor(s) and oxidatively modified proteins in endometriosis. Fertil Steril 1998; 69: 1085–1091.

    PubMed  CAS  Google Scholar 

  188. Endemann G, Stanton LW, Madden KS, Bryant CM, White RT, Frotter AA. CD36 is a receptor for oxidized low density lipoprotein. J Biol Chem 1993; 268: 11811–11816.

    PubMed  CAS  Google Scholar 

  189. Murphy AA, Santanam N, Parthasarathy S. Endometriosis: a disease of oxidative stress? Semin Reprod Endocrinol 1998; 16: 263–273.

    PubMed  CAS  Google Scholar 

  190. Cunningham FG, Lindheimer MD. Hypertension in pregnancy. N Engl J Med 1992; 326: 927–932.

    PubMed  CAS  Google Scholar 

  191. Yoneyama Y, Sawa R, Suzuki S et al. Relationship between plasma malondialdehyde levels and adenosine deaminase activities in preeclampsia. Clin Chim Acta 2002; 322: 169–173.

    PubMed  CAS  Google Scholar 

  192. Hubel CA. Oxidative stress in the pathogenesis of preeclampsia. Proc Soc Exp Biol Medical 1999; 222: 222–235.

    CAS  Google Scholar 

  193. Sikkema JM, van Rijn BB, Franx A et al. Placental superoxide is increased in pre-edampsia. Placenta 2001; 22: 304–308.

    PubMed  CAS  Google Scholar 

  194. Myatt L, Rosenfield RB, Eis AL, Brockman DE, Greer I, Lyall F. Nitrotyrosine residues in placenta. Evidence of peroxynitrite formation and action. Hypertension 1996; 28: 488–493.

    PubMed  CAS  Google Scholar 

  195. Hubel CA, McLaughlin MK, Evans RW, Hauth BA, Sims CJ, Roberts JM. Fasting serum triglycerides, free fatty acids, and malondialdehyde are increased in preeclampsia, are positively correlated, and decrease within 48 hours post partum. Am J Obstet Gynecol 1996; 174: 975–982.

    PubMed  CAS  Google Scholar 

  196. Walsh SW, Wang Y. Trophoblast and placental villous core production of lipid peroxides, thromboxane, and prostacyclin in preeclampsia. J Clin Endocrinol Metab 1995; 80: 1888–1893.

    PubMed  CAS  Google Scholar 

  197. Zusterzeel PL, Rutten H, Roelofs HM, Peters WH, Steegers EA. Protein carbonyls in decidua and placenta of preedamptic women as markers for oxidative stress. Placenta 2001; 22: 213–219.

    PubMed  CAS  Google Scholar 

  198. Roberts JM, Hubel CA. Is oxidative stress the link in the twostage model of pre-edampsia? Lancet 1999; 354: 788–789.

    PubMed  CAS  Google Scholar 

  199. Bilodeau JF, Hubel CA. Current concepts in the use of antioxidants for the treatment of preeclampsia. J Obstet Gynaecol Can 2003; 25: 742–750.

    PubMed  Google Scholar 

  200. Mikhail MS, Anyaegbunam A, Garfinkel D, Palan PR, Basu J, Romney SL. Preeclampsia and antioxidant nutrients: decreased plasma levels of reduced ascorbic acid, alphatocopherol, and beta-carotene in women with preeclampsia. Am J Obstet Gynecol 1994; 171: 150–157.

    PubMed  CAS  Google Scholar 

  201. Madazli R, Benian A, Gumustas K, Uzun H, Ocak V, Aksu F. Lipid peroxidation and antioxidants in preeclampsia. Eur J Obstet Gynecol Reprod Biol 1999; 85: 205–208.

    PubMed  CAS  Google Scholar 

  202. Uotila JT, Tuimala RJ, Aarnio TM, Pyykko KA, Ahotupa MO. Findings on lipid peroxidation and antioxidant function in hypertensive complications of pregnancy. Br J Obstet Gynaecol 1993; 100: 270–276.

    PubMed  CAS  Google Scholar 

  203. Chen G, Wilson R, Gumming G, Walker JJ, Smith WE, McKillop JH. Intracellular and extracellular antioxidant buffering levels in erythrocytes from pregnancy-induced hypertension, J Hum Hypertens 1994; 8: 37–42.

    PubMed  CAS  Google Scholar 

  204. Dekker GA, Kraayenbrink AA, Zeeman GG, van Kamp GJ. Increased plasma levels of the novel vasoconstrictor peptide endothelin in severe pre-edampsia. Eur J Obstet Gynecol Reprod Biol 1991; 40: 215–220.

    PubMed  CAS  Google Scholar 

  205. Chen H, Wang Z, Lin M. The role of neutrophil activation in pathogenesis of preeclampsia. J Tongji Med University 2000; 20: 246–248.

    CAS  Google Scholar 

  206. Lee VM, Quinn PA, Jennings SC, Ng LL. Neutrophil activation and production of reactive oxygen species in preeclampsia. J Hypertens 2003; 21: 395–402.

    PubMed  CAS  Google Scholar 

  207. Davidge ST, Hubel CA, Brayden RD, Capeless EC, McLaughlin MK. Sera antioxidant activity in uncomplicated and preeclamptic pregnancies. Obstet Gynecol 1992; 79: 897–901.

    PubMed  CAS  Google Scholar 

  208. Many A, Hubel CA, Roberts JM. Hyperuricemia and xanthine oxidase in preeclampsia, revisited. Am J Obstet Gynecol 1996; 174: 288–291.

    PubMed  CAS  Google Scholar 

  209. Roggensack AM, Zhang Y, Davidge ST. Evidence for peroxynitrite formation in the vasculature of women with preeclampsia. Hypertension 1999; 33: 83–89.

    PubMed  CAS  Google Scholar 

  210. Beckman JS, Koppenol WH. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol 1996; 271: C1424-C1437.

    PubMed  CAS  Google Scholar 

  211. Shaarawy M, Aref A, Salem ME, Sheiba M. Radicalscavenging antioxidants in pre-edampsia and eclampsia. Int J Gynaecol Obstet 1998; 60: 123–128.

    PubMed  CAS  Google Scholar 

  212. Cooke CL, Brockelsby JC, Baker PN, Davidge ST. The receptor for advanced glycation end products (RAGE) is elevated in women with preeclampsia. Hypertens Pregnancy 2003; 22: 173–184.

    PubMed  CAS  Google Scholar 

  213. Wilczynski JR, Glowacka E, Nowak M, Szpakowski A. [Serum concentration of soluble vascular-cellular adhesion molecule-1 (VCAM-1) and expression of its receptor VLA-4 on the surface of peripheral blood and decidual lymphocytes of preeclamptic women]. Ginekol Pol 2003; 74: 1335–1342.

    PubMed  Google Scholar 

  214. Wang Y, Walsh SW, Kay HH. Placental lipid peroxides and thromboxane are increased and prostacyclin is decreased in women with preeclampsia. Am J Obstet Gynecol 1992; 167: 946–949.

    PubMed  CAS  Google Scholar 

  215. Gratacos E, Casals E, Deulofeu R, Cararach V, Alonso PL, Fortuny A. Lipid peroxide and vitamin E patterns in pregnant women with different types of hypertension in pregnancy. Am J Obstet Gynecol 1998; 178: 1072–1076.

    PubMed  CAS  Google Scholar 

  216. Mutlu-Turkoglu H, Ademoglu E, Ibrahimoglu L, Aykac-Toker G, Uysal M. Imbalance between lipid peroxidation and antioxidant status in preeclampsia. Gynecol Obstet Invest 1998; 46: 37–40.

    PubMed  CAS  Google Scholar 

  217. Wang YP, Walsh SW, Guo JD, Zhang JY. The imbalance between thromboxane and prostacyclin in preeclampsia is associated with an imbalance between lipid peroxides and vitamin E in maternal blood. Am J Obstet Gynecol 1991; 165: 1695–1700.

    PubMed  CAS  Google Scholar 

  218. Mosmann TR, Sad S. The expanding universe of T-cell subsets: Th1, Th2 and more. Immunol Today 1996; 17: 138–146.

    PubMed  CAS  Google Scholar 

  219. Redman CW, Sacks GP, Sargent IL. Preeclampsia: an excessive maternal inflammatory response to pregnancy. Am J Obstet Gynecol 1999; 180: 499–506.

    PubMed  CAS  Google Scholar 

  220. Taylor RN, de Groot CJ, Cho YK, Lim KH. Circulating factors as markers and mediators of endothelial cell dysfunction in preeclampsia. Semin Reprod Endocrinol 1998; 16: 17–31.

    PubMed  CAS  Google Scholar 

  221. Saito S, Sakai M, Sasaki Y, Tanebe K, Tsuda H, Michimata T. Quantitative analysis of peripheral blood Th0, Th1, Th2 and the Th1:Th2 cell ratio during normal human pregnancy and preeclampsia. Clin Exp Immunol 1999; 117: 550–555.

    PubMed  CAS  Google Scholar 

  222. Walsh SW. Lipid peroxidation in pregnancy. Hypertens Pregnancy 1994; 13: 1–32.

    CAS  Google Scholar 

  223. Dechend R, Viedt C, Muller DN et al. AT1 receptor agonistic antibodies from preeclamptic patients stimulate NADPH oxidase. Circulation 2003; 107: 1632–1639.

    PubMed  CAS  Google Scholar 

  224. Wallukat G, Homuth V, Fischer T et al. Patients with preeclampsia develop agonistic autoantibodies against the angiotensin AT1 receptor. J Clin Invest 1999; 103: 945–952.

    PubMed  CAS  Google Scholar 

  225. Radi R, Beckman JS, Bush KM, Freeman BA. Peroxynitriteinduced membrane lipid peroxidation: the cytotoxic potential of superoxide and nitric oxide. Arch Biochem Biophys 1991; 288: 481–487.

    PubMed  CAS  Google Scholar 

  226. von Dadelszen P, Wilkins T, Redman CW. Maternal peripheral blood leukocytes in normal and pre-edamptic pregnancies. Br J Obstet Gynaecol 1999; 106: 576–581.

    Google Scholar 

  227. Clark CJ, Boswell F, Greer IA, Lyall F. Treatment of endothelial cells with serum from women with preeclampsia: effect on neutrophil adhesion. J Soc Gynecol Invest 1997; 4: 27–33.

    CAS  Google Scholar 

  228. Wang Y, Gu Y, Philibert L, Lucas MJ. Neutrophil activation induced by placental factors in normal and pre-edamptic pregnancies in vitro. Placenta 2001; 22: 560–565.

    PubMed  CAS  Google Scholar 

  229. Lal AS, Clifton AD, Rouse J, Segal AW, Cohen P. Activation of the neutrophil NADPH oxidase is inhibited by SB 203580, a specific inhibitor of SAPK2/p38. Biochem Biophys Res Commun 1999; 259: 465–470.

    PubMed  CAS  Google Scholar 

  230. Barden A, Ritchie J, Walters B et al. Study of plasma factors associated with neutrophil activation and lipid peroxidation in preeclampsia. Hypertension 2001; 38: 803–808.

    PubMed  CAS  Google Scholar 

  231. Lee VM, Quinn PA, Jennings SC, Ng LL. NADPH oxidase activity in preeclampsia with immortalized lymphoblasts used as models. Hypertension 2003; 41: 925–931.

    PubMed  CAS  Google Scholar 

  232. Ness RB, Roberts JM. Heterogeneous causes constituting the single syndrome of preeclampsia: a hypothesis and its implications. Am J Obstet Gynecol 1996; 175: 1365–1370.

    PubMed  CAS  Google Scholar 

  233. Roberts JM, Taylor RN, Musci TJ, Rodgers GM, Hubel CA, McLaughlin MK. Preeclampsia: an endothelial cell disorder. Am J Obstet Gynecol 1989; 161: 1200–1204.

    PubMed  CAS  Google Scholar 

  234. Sladek SM, Magness RR, Conrad KP. Nitric oxide and pregnancy. Am J Physiol 1997; 272: R441-R463.

    PubMed  CAS  Google Scholar 

  235. Nemeth I, Talosi G, Papp A, Boda D. Xanthine oxidase activation in mild gestational hypertension. Hypertens Pregnancy 2002; 21: 1–11.

    PubMed  CAS  Google Scholar 

  236. Pyska W, Klejewski A, Karolkiewicz J, Szczesniak L, Szczesniak-Chmielecka A, Nowak A. [Imbalance of pro-oxidantsantioxidants in blood of pregnant women with pregnancy induced hypertension]. Ginekol Pol 2002; 73: 14–18.

    PubMed  Google Scholar 

  237. Zusterzeel PL, Steegers-Theunissen RP, Harren FJ et al. Ethene and other biomarkers of oxidative stress in hypertensive disorders of pregnancy. Hypertens Pregnancy 2002; 21: 39–49.

    PubMed  CAS  Google Scholar 

  238. Hubel CA, Roberts JM, Taylor RN, Musci TJ, Rogers GM, McLaughlin MK. Lipid peroxidation in pregnancy: new perspectives on preeclampsia. Am J Obstet Gynecol 1989; 161: 1025–1034.

    PubMed  CAS  Google Scholar 

  239. Jain SK, Wise R. Relationship between elevated lipid peroxides, vitamin E deficiency and hypertension in preeclampsia. Mol Cell Biochem 1995; 151: 33–38.

    PubMed  CAS  Google Scholar 

  240. Australasian Society for the Study of Hypertension in Pregnancy. Management of hypertension in pregnancy: executive summary. Med J Aust 1993; 158: 700–702.

    Google Scholar 

  241. Consensus report. National high blood pressure education program Working Group report on high blood pressure in pregnancy. Am J Obstet Gynecol 1990; 163: 1689–1712.

    Google Scholar 

  242. Brown MA, Buddie ML. The importance of nonprotenuric hypertension in pregnancy. Hypertens Pregnancy 1995; 14: 57–65.

    Google Scholar 

  243. Chappell LC, Seed H, Briley AL et al. Effect of antioxidants on the occurrence of pre-eclampsia in women at increased risk: a randomised trial. Lancet 1999; 354: 810–816.

    PubMed  CAS  Google Scholar 

  244. Pedersen LM, Tygstrup I, Pedersen J. Congenital malformations in newborn infants of diabetic women. Correlation with maternal diabetic vascular complications. Lancet 1964; 13: 1124–1126.

    Google Scholar 

  245. Eriksson UJ, Borg LAH, Forsberg H, Simian CM, Suzuki N, Yang X. Can fetal loss be prevented? The biochemical basis of diabetic embryopathy. Diabetes 1996; 4: 49–69.

    Google Scholar 

  246. Oberley LW. Free radicals and diabetes. Free Radic Biol Med 1988; 5: 113–124.

    PubMed  CAS  Google Scholar 

  247. Godin GV, Wohaib SA. Reactive oxygen radical processes in diabetes. In: Singal PK, ed. Oxygen Radicals in the Pathophysiology of the Heart Disease. Boston: Kluwer, 1988.

    Google Scholar 

  248. Daughterey A, Baynes JW, eds. The Role of Oxidation in the Pathophysiology. St. Louis: MedStrategy, 1991.

    Google Scholar 

  249. Baynes JW. Role of oxidative stress in development of complications in diabetes. Diabetes 1991; 40: 405–412.

    PubMed  CAS  Google Scholar 

  250. Wentzel P, Eriksson UJ. Antioxidants diminish developmental damage induced by high glucose and cyclooxygenase inhibitors in rat embryos in vitro. Diabetes 1998; 47: 677–684.

    PubMed  CAS  Google Scholar 

  251. Baker L, Piddington R, Goldman A, Egler J, Moehring J. Myo-inositol and prostaglandins reverse the glucose inhibition of neural tube fusion in cultured mouse embryos. Diabetologia 1990; 33: 593–596.

    PubMed  CAS  Google Scholar 

  252. Goto MP, Goldman AS, Uhing MR. PGE2 prevents anomalies induced by hyperglycemia or diabetic serum in mouse embryos. Diabetes 1992; 41: 1644–1650.

    PubMed  CAS  Google Scholar 

  253. Goldman AS, Baker L, Piddington R, Marx B, Herold R, Egler J. Hyperglycemia-induced teratogenesis is mediated by a functional deficiency of arachidonic acid. Proc Natl Acad Sci USA 1985; 82: 8227–8231.

    PubMed  CAS  Google Scholar 

  254. Pinter E, Reece EA, Leranth CZ et al. Arachidonic acid prevents hyperglycemia-assodated yolk sac damage and embryopathy. Am J Obstet Gynecol 1986; 155: 691–702.

    PubMed  CAS  Google Scholar 

  255. Hulkower KI, Wertheimer SJ, Levin W et al. Interleukin-1 beta induces cytosolic phospholipase A2 and prostaglandin H synthase in rheumatoid synovial fibroblasts. Evidence for their roles in the production of prostaglandin E2. Arthritis Rheum 1994; 37: 653–661.

    PubMed  CAS  Google Scholar 

  256. Reddy ST, Herschman HR. Ligand-induced prostaglandin synthesis requires expression of the TIS10/PGS-2 prostaglandin synthase gene in murine fibroblasts and macrophages. J Biol Chem 1994; 269: 15473–15480.

    PubMed  CAS  Google Scholar 

  257. Trocino RA, Akazawa S, Ishibashi M et al. Significance of glutathione depletion and oxidative stress in early embryogenesis in glucose-induced rat embryo culture. Diabetes 1995; 44: 992–998.

    PubMed  CAS  Google Scholar 

  258. Siman CM, Eriksson UJ. Vitamin E decreases the occurrence of malformations in the offspring of diabetic rats. Diabetes 1997; 46: 1054–1061.

    PubMed  CAS  Google Scholar 

  259. Forsberg H, Eriksson UJ, Welsh N. Apoptosis in embryos of diabetic rats. Pharmacol Toxicol 1998; 83: 104–111.

    PubMed  CAS  Google Scholar 

  260. Eriksson UJ, Borg LA. Diabetes and embryonic malformations. Role of substrate-induced free-oxygen radical production for dysmorphogenesis in cultured rat embryos. Diabetes 1993; 42: 411–419.

    PubMed  CAS  Google Scholar 

  261. Eriksson UJ, Siman CM. Pregnant diabetic rats fed the antioxidant butylated hydroxytoluene show decreased occurrence of malformations in offspring. Diabetes 1996; 45: 1497–1502.

    PubMed  CAS  Google Scholar 

  262. Viana M, Herrera E, Bonet B. Teratogenic effects of diabetes mellitus in the rat. Prevention by vitamin E. Diabetologia 1996; 39: 1041–1046.

    PubMed  CAS  Google Scholar 

  263. Sivan E, Reece EA, Wu YK, Homko CJ, Polansky M, Boren-stein M. Dietary vitamin E prophylaxis and diabetic embryopathy: morphologic and biochemical analysis. Am J Obstet Gynecol 1996; 175: 793–799.

    PubMed  CAS  Google Scholar 

  264. Siman CM, Eriksson UJ. Vitamin C supplementation of the maternal diet reduces the rate of malformation in the offspring of diabetic rats. Diabetologia 1997; 40: 1416–1424.

    PubMed  CAS  Google Scholar 

  265. Wentzel P, Thunberg L, Eriksson UJ. Teratogenic effect of diabetic serum is prevented by supplementation of superoxide dismutase and N-acetylcysteine in rat embryo culture. Diabetologia 1997; 40: 7–14.

    PubMed  CAS  Google Scholar 

  266. Yang X, Borg LA, Siman CM, Eriksson UJ. Maternal antioxidant treatments prevent diabetes-induced alterations of mitochondrial morphology in rat embryos. Anat Rec 1998; 251: 303–315.

    PubMed  CAS  Google Scholar 

  267. Cederberg J, Basu S, Eriksson UJ. Increased rate of lipid peroxidation and protein carbonylation in experimental diabetic pregnancy. Diabetologia 2001; 44: 766–774.

    PubMed  CAS  Google Scholar 

  268. Eriksson UJ, Borg LA. Protection by free oxygen radical scavenging enzymes against glucose-induced embryonic malformations in vitro. Diabetologia 1991; 34: 325–331.

    PubMed  CAS  Google Scholar 

  269. Siman M. Congenital malformations in experimental diabetic pregnancy: aetiology and antioxidative treatment. Mini review based on a doctoral thesis. Ups J Medical Sci 1997; 102.

  270. Yang X, Borg LA, Eriksson UJ. Altered metabolism and superoxide generation in neural tissue of rat embryos exposed to high glucose. Am J Physiol 1997; 272: E173-E180.

    PubMed  CAS  Google Scholar 

  271. Hagay ZJ, Weiss Y, Zusman I et al. Prevention of diabetesassociated embryopathy by overexpression of the free radical scavenger copper zinc superoxide dismutase in transgenic mouse embryos. Am J Obstet Gynecol 1995; 173: 1036–1041.

    PubMed  CAS  Google Scholar 

  272. Sakamaki H, Akazawa S, Ishibashi M et al. Significance of glutathione-dependent antioxidant system in diabetesinduced embryonic malformations. Diabetes 1999; 48: 1138–1144.

    PubMed  CAS  Google Scholar 

  273. Kinalski M, Sledziewski A, Telejko B et al. Lipid peroxidation, antioxidant defence and acid-base status in cord blood at birth: the influence of diabetes. Horm Metab Res 2001; 33: 227–231.

    PubMed  CAS  Google Scholar 

  274. Wentzel P, Ejdesjo A, Eriksson UJ. Maternal diabetes in vivo and high glucose in vitro diminish GAPDH activity in rat embryos. Diabetes 2003; 52: 1222–1228.

    PubMed  CAS  Google Scholar 

  275. Martinez-Frias ML. Epidemiological analysis of outcomes of pregnancy in diabetic mothers: identification of the most characteristic and most frequent congenital anomalies. Am J Med Genet 1994; 51: 108–113.

    PubMed  CAS  Google Scholar 

  276. Mills JL, Baker L, Goldman AS. Malformations in infants of diabetic mothers occur before the seventh gestational week. Implications for treatment. Diabetes 1979; 28: 292–293.

    PubMed  CAS  Google Scholar 

  277. Cousins L. Congenital anomalies among infants of diabetic mothers. Etiology, prevention, prenatal diagnosis. Am J Obstet Gynecol 1983; 147: 333–338.

    PubMed  CAS  Google Scholar 

  278. Becerra JE, Khoury MJ, Cordero JF, Erickson JD. Diabetes mellitus during pregnancy and the risks for specific birth defects: a population-based case-control study. Pediatrics 1990; 85: 1–9.

    PubMed  CAS  Google Scholar 

  279. Miodovnik M, Mimouni F, Tsang RC, Ammar E, Kaplan L, Siddiqi TA. Glycemic control and spontaneous abortion in insulin-dependent diabetic women. Obstet Gynecol 1986; 68: 366–369.

    PubMed  CAS  Google Scholar 

  280. Kitzmiller JL, Cloherty JP, Younger MD et al. Diabetic pregnancy and perinatal morbidity. Am J Obstet Gynecol 1978; 131: 560–580.

    PubMed  CAS  Google Scholar 

  281. Mills JL. Malformations in infants of diabetic mothers. Teratology 1982; 25: 385–394.

    PubMed  CAS  Google Scholar 

  282. Langer O, Conway DL. Level of glycemia and perinatal outcome in pregestational diabetes. J Matern Fetal Med 2000; 9: 35–41.

    PubMed  CAS  Google Scholar 

  283. Suhonen L, Hiilesmaa V, Teramo K. Glycaemic control during early pregnancy and fetal malformations in women with type I diabetes mellitus. Diabetologia 2000; 43: 79–82.

    PubMed  CAS  Google Scholar 

  284. Schaefer-Graf UM, Buchanan TA, Xiang A, Songster G, Montoro M, Kjos SL. Patterns of congenital anomalies and relationship to initial maternal fasting glucose levels in pregnancies complicated by type 2 and gestational diabetes. Am J Obstet Gynecol 2000; 182: 313–320.

    PubMed  CAS  Google Scholar 

  285. Aberg A, Westbom L, Kallen B. Congenital malformations among infants whose mothers had gestational diabetes or pre-existing diabetes. Early Hum Dev 2001; 61: 85–95.

    PubMed  CAS  Google Scholar 

  286. Chang TI, Horal M, Jain SK, Wang F, Patel R, Loeken MR. Oxidant regulation of gene expression and neural tube development: insights gained from diabetic pregnancy on molecular causes of neural tube defects. Diabetologia 2003; 46: 538–545.

    PubMed  CAS  Google Scholar 

  287. Wentzel P, Welsh N, Eriksson UJ. Developmental damage, increased lipid peroxidation, diminished cyclooxygenase-2 gene expression, and lowered prostaglandin E2 levels in rat etnbryos exposed to a diabetic environment. Diabetes 1999; 48: 813–820.

    PubMed  CAS  Google Scholar 

  288. Jain SK, Levine SN, Duett J, Hollier B. Reduced vitamin E and increased lipofuscin products in erythrocytes of diabetic rats. Diabetes 1991; 40: 1241–1244.

    PubMed  CAS  Google Scholar 

  289. Cunningham JJ, Ellis SL, McVeigh KL, Levine RE, Calles-Escandon J. Reduced mononuclear leukocyte ascorbic acid content in adults with insulin-dependent diabetes mellitus consuming adequate dietary vitamin C. Metabolism 1991; 40: 146–149.

    PubMed  CAS  Google Scholar 

  290. Yang X, Borg LA, Eriksson UJ. Altered mitochondrial morphology of rat embryos in diabetic pregnancy. Anat Rec 1995; 241: 255–267.

    PubMed  CAS  Google Scholar 

  291. Reece EA, Eriksson UJ. The pathogenesis of diabetesassociated congenital malformations. Obstet Gynecol Clin North Am 1996; 23: 29–45.

    PubMed  CAS  Google Scholar 

  292. Wiznitzer A, Ayalon N, Hershkovitz R et al. Lipoic acid prevention of neural tube defects in offspring of rats with streptozocin-induced diabetes. Am J Obstet Gynecol 1999; 180: 188–193.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok Agarwal.

About this article

Cite this article

Sharma, R.K., Agarwal, A. Role of reactive oxygen species in gynecologic diseases. Reprod Med Biol 3, 177–199 (2004). https://doi.org/10.1111/j.1447-0578.2004.00068.x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1111/j.1447-0578.2004.00068.x

Key Words

Navigation