Skip to main content

Advertisement

Log in

cDNA cloning and complete primary structures of myosin heavy chains from brushtooth lizardfish Saurida undosquamis and wanieso lizardfish S. wanieso fast skeletal muscles

  • Published:
Fisheries Science Aims and scope Submit manuscript

Abstract

The complete cDNA sequences encoding predominant types of myosin heavy chain (MYH) in the fast skeletal muscle were, determined for brushtooth lizardfish Saurida undosquamis and wanieso lizardfish S. wanieso, which are used as materials for preparing high-quality surimi-based products. The cDNA consisted of 5973 and 5987 bp, respectively, and both encompassed an open reading frame encoding a polypeptide of 1936 amino acid residues. Brushtooth and wanieso lizardfish MYH showed the amino acid, sequence identity of 92–93% to white croaker MYH, which was higher than that of 90% to walleye pollack MYH. The putative binding sites for ATP, actin, and regulatory and essential light chains in the subfragment-1 region of brushtooth lizardfish MYH exhibited a high identity with white croaker counterparts as well as the sequences of subfragment-2 and light meromyosin. In contrast, phylogenetic tree, constructed by the neighbor-joining method based on mitochondrial 16S rRNA gene, revealed that the two lizardfish species formed a cluster with walleye pollack, which was paraphyletic with white croaker. Therefore, a good reputation for lizardfish and white croaker to have a high thermal-gel forming ability seemed to be reflected by MYH rather than biolgoical similarity as revealed by the mitochondrial 16S rRNA gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Bechtel PJ. Muscle development and contractile proteins. In: Bechtel PJ, ed. Muscle as Food. Academic Press, Orland. 1986; 1–35.

    Google Scholar 

  2. Harrington WF, Rogers ME. Myosin. Annu. Rev. Biochem. 1984; 53: 35–73.

    Article  PubMed  CAS  Google Scholar 

  3. Lowey S, Slayter HS, Weeds AG, Baker H. Substructure of the myosin molecule. I. Subfragments of myosin by enzymatic degradation. J. Mol. Biol. 1969; 42: 1–29.

    Article  PubMed  CAS  Google Scholar 

  4. Connell JJ. The relative stabilities of the skeletal-muscle myosins of some animals. biochem. J. 1961; 80: 503–509.

    PubMed  CAS  Google Scholar 

  5. Johnston IA, Frearson N, Goldspink G. The effects of environmental temperature on the properties of myofibrillar adenosine triphosphatase from various species of fish. Biochem. J. 1973; 133: 735–738.

    PubMed  CAS  Google Scholar 

  6. Yoon HS, Kakinuma M, Hirayama Y, Yamamoto T, Watabe S. cDNA cloning of myosin heavy chain from white croaker fast skeletal muscle and characterization of its complete primary structure. Fish Sci. 2000; 66: 1163–1171.

    Article  CAS  Google Scholar 

  7. Fukushima H, Yoon HS, Watabe S. Differences in polymer formation through disulfide bonding of recombinant light meromyosin between white croaker and walleye pollack and their possible relation to species-specific differences in thermal unfolding. J. Agric. Food Chem. 2003; 51: 4089–4095.

    Article  PubMed  CAS  Google Scholar 

  8. Fukushima H, Satoh Y, Nakaya S, Watabe S. Thermal effects on the fast skeletal myosins from Alaska pollack, white croaker, and rabbit in relation to gel formation. J. Food Sci. 2003; 68: 1573–1577.

    Article  CAS  Google Scholar 

  9. Fukushima H, Satoh Y, Yoon HS, Togashi M, Nakaya M, Watabe S. Rheological properties of fast skeletal myosin rod and light meromyosin from walleye pollack and white croaker: contribution of myosin fragments to thermal gel formation. J. Agric. Food Chem. 2005; 53: 9193–9198.

    Article  PubMed  CAS  Google Scholar 

  10. Satoh Y, Nakaya M, Ochiai Y, Watabe S. Characterization of fast skeletal myosin from white croaker in comparison with that from walleye pollack. Fish Sci. 2006; 72: 646–655.

    Article  CAS  Google Scholar 

  11. Ojima T, Kawashima N, Inoue A, Amauchi A, Togashi M, Watabe S, Nishita K. Determination, of primary structure of heavy meromyosin region of walleye pollack myosin heavy chain by cDNA cloning. Fish Sci. 1998; 64: 812–819.

    CAS  Google Scholar 

  12. Togashi M, Kakinuma M, Hirayama Y, Kukushima H, Watabe S, Ojima T, Nishita K. cDNA cloning of myosin rod and complete primary structure of myosin heavy chain of walleye pollack fast skeletal muscle Fish Sci. 2000; 66: 349–357.

    Article  CAS  Google Scholar 

  13. Togashi M, Kakinuma M, Nakaya M, Ooi T, Watabe S. Differential scanning calorimetry and circular dichroism spectrophotometry of walleye pollack myosin and light meromyosin. J. Agric. Food Chem. 2002; 50: 4803–4811.

    Article  PubMed  CAS  Google Scholar 

  14. Nozaki Y, Yamamoto T, Tabata Y. On board treatment of lizardfish as raw material for fish jelly products. Nippon Suisan Gakkaishi 1986; 52: 1565–1572.

    Google Scholar 

  15. Hossain MA, Ishihara T, Hara K, Osatomi K, Khan MAA, Nozaki Y. Effect of proteolytic squid protein hydrolysate on the state of water and dehydration-induced denaturation of lizardfish myosin. J. Agric. Food Chem. 2003; 51: 4769–4774.

    Article  PubMed  CAS  Google Scholar 

  16. Khan MAA, Hossain MA, Ishihara T, Hara K, Osatomi K, Nozaki Y. Effect of fish protein hydrolysate on the gel-forming ability, state of water, and denaturation of lizardfish (Saurida wanieso) surimi during frozen storage. Trans. JSRAE 2003; 20: 185–191.

    Google Scholar 

  17. Sezaki K, Begum RA, Wongrat P, Srivastava MP, Sri Kantha S, Ishihara H, Tanaka S, Taniuchi T, Watabe S. Molecular phylogeny of Asian freshwater and marine stingrays based on the DNA nucleotide and deduced amino acid sequences of the cytochrome b gene. Fish Sci. 1999; 65: 563–570.

    CAS  Google Scholar 

  18. Palumbi SR. Nucleic acids II. the polymerase chain reaction. In: Hillis DM, Moritz C, Mable BK, eds. Molecular Systematics, 2nd edn. Sinauer Associates. Massachusetts. 1996; 205–247.

    Google Scholar 

  19. Thompson DJ, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997; 25: 4876–4882.

    Article  PubMed  CAS  Google Scholar 

  20. Kumar S, Tamura K, Nei M. MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief. Bioinform 2004; 5: 150–163.

    Article  PubMed  CAS  Google Scholar 

  21. Imai J, Hirayama Y, Kikuchi K, Kakinuma M, Watabe S. cDNA cloning of myosin heavy chain isoforms from carp fast skeletal muscle and their gene expression associated with temperature acclimation. J. Exp. Biol. 1997; 200 27–34.

    PubMed  CAS  Google Scholar 

  22. Hirayama Y, Watabe S. Structural differences in the crossbridge head of temperature-associated myosin subfragment-1 isoforms from carp fast skeletal muscle. Eur. J. Biochem. 1997; 246: 380–387.

    Article  PubMed  CAS  Google Scholar 

  23. Murphy CT, Spudich JA. Dictyostelium myosin 25–50K loop substitutions specifically affect ADP release rates. Biochemistry 1998; 37: 6738–6744.

    Article  PubMed  CAS  Google Scholar 

  24. Uyeda TQP, Ruppel KM, Spudich JA. Enzymatic activities correlate with chimeric substitutions at the actin binding face of myosin. Nature 1994; 368: 567–569.

    Article  PubMed  CAS  Google Scholar 

  25. Hirayama Y Sutoh K, Watabe S. Structure-function relationships of the two surface loops of myosin heavy chain isoforms from thermally acclimated carp. Biochem. Biophys. Res. Commun 2000; 269: 237–241.

    Article  PubMed  CAS  Google Scholar 

  26. Maita T, Yajima E, Nagata S, Miyanishi T, Nakayama S, Matsuda G. The primary structure of skeletal muscle myosin heavy chain. IV. Sequence of the rod, and the complete 1,938-residue sequence of the heavy chain. J. Biochem. 1991; 110: 75–87.

    PubMed  CAS  Google Scholar 

  27. Gauvry L, Ennion S, Ettelaie C, Goldspink G Characterization of red and white muscle myosin heavy chain gene coding sequences from Antarctic and tropical fish. Comp. Biochem. Physiol. B 2000; 127: 575–588.

    Article  PubMed  CAS  Google Scholar 

  28. Xie X, Harrison DH, Schlichting I, Sweet RM, Kalabokis VN, Szent-Györgyi AG, Cohen C. Structure of the regulatory domain of scallop myosin at 2.8 Å. resolution. Nature 1994; 368: 306–312.

    Article  PubMed  CAS  Google Scholar 

  29. McLachlan AD, Karn J. Periodic charge distributions in the myosin rod amino acid sequence match cross-bridge spacings in muscle. Nature 1982; 299: 803–808.

    Article  Google Scholar 

  30. Iwami Y, Ojima T, Inoue A, Nishita K. Primary structure of myosin heavy chain from fast skeletal muscle of chum salmon Oncorhynchus keta. Comp. Biochem. Physiol. B 2002; 133: 257–267.

    Article  PubMed  Google Scholar 

  31. Kakinuma M, Hatanaka A, Fukushima H, Nakaya M, Maeda K, Doi Y, Ooi T, Watabe S. Differential scanning calorimetry of light meromyosin fragments having various lengths of carp fast skeletal muscle isoforms. J. Biochem. 2000; 128: 11–20.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shugo Watabe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hossain, M.A., Ikeda, D., Nomura, A. et al. cDNA cloning and complete primary structures of myosin heavy chains from brushtooth lizardfish Saurida undosquamis and wanieso lizardfish S. wanieso fast skeletal muscles. Fish Sci 74, 921–934 (2008). https://doi.org/10.1111/j.1444-2906.2008.01607.x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1111/j.1444-2906.2008.01607.x

Key words

Profiles

  1. Daisuke Ikeda