Skip to main content
Log in

Induced thermotolerance and expression of heat shock protein 70 in sea cucumber Apostichopus japonicus

  • Published:
Fisheries Science Aims and scope Submit manuscript

Abstract

Thermal limits, induced thermotolerance and the expression of heat shock protein 70 (Hsp70) in an echinoderm Apostichopus japonicus were studied. The sublethal and lethal temperatures for the juveniles were 30 and 34°C, respectively; a previous sublethal heat shock exposure (30°C, 2 h) could increase the survival rates of the sea cucumbers when they were exposed to 34°C. This induced thermotolerance could last for at least 2 days. Levels of Hsp70 increased substantially after sublethal heat shock exposure and linearly decreased with time. This result indicated that a close relationship existed between the induction of thermotolerance and the levels of Hsp70 in A. japonicus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weber IA. Relationship of heat shock proteins and induced thermal resistance. Cell. Prolif. 1992; 25: 101–113.

    Article  PubMed  CAS  Google Scholar 

  2. Trent JD, Gabrielsen M, Jensen B, Neuhard J, Olsen J. Acquired thermotolerance and heat shock proteins in thermophiles from the three phylogenetic domains. J. Bacteriol. 1994; 176: 6148–6152.

    PubMed  CAS  Google Scholar 

  3. Clegg JS, Uhlinger KR, Jackson SA, Cherr GN, Rifkin E, Friedman CS. Induced thermotolerance and the heat shock protein-70 family in the Pacific oyster Crassostrea gigas. Mol. Mar. Biol. Biotechnol. 1998; 7: 21–30.

    CAS  Google Scholar 

  4. Hofmann GE, Somero GN. Evidence for protein damage at environmental temperatures: seasonal changes in levels of ubiquitin conjugates and hsp70 in the intertidal mussel, Mytilus trossulus. J. Exp. Biol. 1995; 198: 1509–1518.

    PubMed  CAS  Google Scholar 

  5. Tomanek L, Somero GN. Evolutionary and acclimation-induced variation in the heat-shock responses of congeneric marine (genus Tegula) from different thermal habitats: implications for limits of thermotolerance and biogeography. J. Exp. Biol. 1999; 202: 2925–2936.

    PubMed  Google Scholar 

  6. Buckley BA, Owen ME, Hofmann GE. Adjusting the thermostat: the threshold induction temperature for the heat-shock responses in intertidal mussels (genus Mytilus) changes as a function of thermal history. J. Exp. Biol. 2001; 204: 3571–3579.

    PubMed  CAS  Google Scholar 

  7. Helmuth BS, Hofmann GE. Microhabitats, thermal heterogeneity, and patterns of physiological stress in the rocky intertidal zone. Biol. Bull. 2001; 201: 374–384.

    Article  PubMed  CAS  Google Scholar 

  8. Parsell DA, Lindquist S. The function of heat shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu. Rev. Genet. 1993; 27: 437–496.

    Article  PubMed  CAS  Google Scholar 

  9. Morimoto RI, Tissières A, Georgopoulos C. Stress Proteins in Biology and Medicine. Cold Harbor Laboratory Press, Cold Spring Harbor, NY. 1990.

    Google Scholar 

  10. Frydman J, Höhfeld J. Chaperones get in touch: the hip-hop connection. Trends Biochem. Sci. 1997; 22: 87–92.

    Article  PubMed  CAS  Google Scholar 

  11. Feder ME, Hofmann GE. Heat-shock proteins, molecular chaperones, and the stress responses: evolutionary and ecological physiology. Annu. Rev. Physiol. 1999; 61: 243–282.

    Article  PubMed  CAS  Google Scholar 

  12. Hamdoun AM, Cheney DP, Cherr GN. Phenotypic plasticity of HSP70 and HSP70 gene expression in the pacific oyster (Crassostrea gigas): implications for thermal limits and induction of thermal tolerance. Biol. Bull. 2003; 205: 160–169.

    Article  PubMed  CAS  Google Scholar 

  13. Sorte CJB, Hofmann GE. Thermotolerance and heat shock protein expression in Northeastern Pacific Nucella species with different biogeographical ranges. Mar. Biol. 2005; 148: 985–993.

    Article  Google Scholar 

  14. Liao YL. Fauna Sinica: Phylum Echinodermata Class Holothuroidea, Science Press, Beijing. 1997.

    Google Scholar 

  15. Gavrilova GS. Regularities of distribution and present state of commercial echinoderm stocks in Peter the Great Bay (Japan Sea). In: Mooi R, Telford M (eds). Echinoderms: San Francisco: Proceedings of the Ninth International Echinoderm Conference San Francisco, California, USA, 5–9 August. Balkema, Rotterdam. 1996; 35.

    Google Scholar 

  16. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970; 227: 680–685.

    Article  PubMed  CAS  Google Scholar 

  17. Kyhse-Andersen J. Electroblotting of multiple gels: a simple apparatus without buffer tank for rapid transfer of proteins from polyacrylamide to nitrocellulose. J. Biochem. Biophys. Methods 1984; 10: 203–209.

    Article  PubMed  CAS  Google Scholar 

  18. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principles of protein-dye binding. Anal. Biochem. 1976; 72: 248–254.

    Article  PubMed  CAS  Google Scholar 

  19. Finney DJ. Probit Analysis. Cambridge University Press, Cambridge. 1971.

    Google Scholar 

  20. Dong YW, Dong SL, Tian XL, Zhang MZ, Wang F. Effects of water temperature on growth, respiration and body composition of young sea cucumber Apostichopus japonicus. J. Fish. Sci. China 2005; 12: 33–38.

    CAS  Google Scholar 

  21. Dong YW, Dong SL. Growth and oxygen consumption of the juvenile sea cucumber Apostichopus japonicus (Selenka) at constant and fluctuating water temperatures. Aquac. Res. 2006; 37: 1327–1333.

    Article  Google Scholar 

  22. Dong YW, Dong SL, Tian XL, Wang F, Zhang MZ. Effects of diel temperature fluctuations on growth, oxygen consumption and proximate body composition in the sea cucumber Apostichopus japonicus Selenka. Aquaculture 2006; 255: 514–521.

    Article  Google Scholar 

  23. Nover L. Heat Shock Response. CRC Press, Boca Raton, CA. 1991.

    Google Scholar 

  24. Feige U, Morimoto RI, Yahara I, Polla BS. Stress-Inducible Cellular Responses. Birkhäuser-Verlag, Berlin. 1996.

    Google Scholar 

  25. Bonaventura R, Poma V, Costa C, Matranga V. UVB radiation prevents skeleton growth and stimulates the expression of stress markers in sea urchin embryos. Biochem. Biophys. Res. Commun. 2005; 328: 150–157.

    Article  PubMed  CAS  Google Scholar 

  26. Ellis RJ. The Chaperonins. Academic Press, New York, NY. 1996.

    Google Scholar 

  27. Lindquist S. The heat-shock response. Annu. Rev. Biochem. 1986; 55: 1151–1191.

    Article  PubMed  CAS  Google Scholar 

  28. Pörtner HO. Climate variations and the physiological basis of temperature dependent biogeography: systemic to molecular hierarchy of thermal tolerance in animals. Comp. Biochem. Physiol. 2002; 132A: 739–761.

    Google Scholar 

  29. Landry J, Zbernier D, Chretien P, Nicole LM, Tanguay RM, Marceau N. Synthesis and degradation of heat shock proteins during development and decay of thermotolerance. Cancer Res. 1982; 42: 2457–2461.

    PubMed  CAS  Google Scholar 

  30. Tomanek L, Somero GN. Time course and magnitude of synthesis of heat-shock proteins in congeneric marine snails (genus Tegula) from different tidal heights. Physiol. Biochem. Zool. 2000; 73: 249–256.

    Article  PubMed  CAS  Google Scholar 

  31. Lindquist S. Varying patterns of protein synthesis in Drosophila during heat shock: implications for regulations. Dev. Biol. 1980; 77: 463–479.

    Article  PubMed  CAS  Google Scholar 

  32. Lindquist S. Regulation of protein synthesis during heat shock. Nature 1981; 293: 311–314.

    Article  PubMed  CAS  Google Scholar 

  33. Lindquist S. Autoregulation of the heat-shock response. In: Ilan J (ed.). Translational Regulation of Gene Expression 2. Plenum Press, New York. 1993: 279–320.

    Google Scholar 

  34. Storti RV, Scott MP, Rich A, Pardue ML. Translational control of protein synthesis in response to heat shock in D. melanogaster cells. Cell 1980; 22: 825–834.

    Article  PubMed  CAS  Google Scholar 

  35. Petersen NS, Mitchell HK. Recovery of protein synthesis after heat shock: prior heat treatment affects the ability of cells to translate mRNA. Proc. Natl. Acad. Sci. USA 1981; 78: 1708–1711.

    Article  PubMed  CAS  Google Scholar 

  36. Beck SC, De Maio A. Stabilization of protein synthesis in thermotolerant cells during heat shock. J. Biol. Chem. 1994: 269: 21803–21811.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunwei Dong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, Y., Dong, S. Induced thermotolerance and expression of heat shock protein 70 in sea cucumber Apostichopus japonicus . Fish Sci 74, 573–578 (2008). https://doi.org/10.1111/j.1444-2906.2008.01560.x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1111/j.1444-2906.2008.01560.x

Key Words

Navigation