Skip to main content

Advertisement

Log in

An assessment of genetic diversity in wild and captive populations of endangered Japanese bitterling Tanakia tanago (Cyprinidae) using amplified fragment length polymorphism (AFLP) markers

  • Published:
Fisheries Science Aims and scope Submit manuscript

Abstract

The Japanese bitterling Tanakia tanago (Cyprinidae) is on the verge of extinction in the wild, placing great importance on captive breeding programs for current conservation of the species. However, the loss of genetic diversity during captive breeding is an ongoing matter of concern. Since some captive populations have been almost monomorphic in mitochondrial DNA (mtDNA), this hampers assessments of their genetic diversity during captive breeding. To more accurately assess their genetic diversity, one wild and three captive populations were examined using amplified fragment length polymorphism (AFLP) markers. Estimates of average heterozygosity and nucleotide diversity ranged 0.0479–0.1920 and 0.0023–0.0088, respectively, enabling comparison of genetic diversity among the wild and captive populations, and among year-classes of captive populations. Significant differences in numbers of amplified fragments and proportions of polymorphic fragments were observed among year-classes of all populations. The indices of genetic diversity calculated from AFLP seemed to be, however, less sensitive to weak bottlenecks. No continuous decrease in genetic diversity in nuclear DNA was detected in presently captive populations. This supports the possibility of re-introduction of the captive populations into the original habitats, although survival and reproductive ability in the wild must be taken into consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wilson AC, Price SMR. Reintroduction as a reason for captive breeding. In: Olney PJS, Mace GM, Feistner ATC (eds). Creative Conservation: Interactive Management of Wild and Captive Animals. Chapman & Hall, London. 1994; 243–264.

    Google Scholar 

  2. Philippart JC. Is captive breeding an effective solution for the preservation of endemic species? Biol. Conserv. 1995; 72: 281–295.

    Article  Google Scholar 

  3. Frankham R, Ballou JD, Briscoe DA. Introduction to Conservation Genetics. Cambridge University Press, Cambridge. 2002.

    Google Scholar 

  4. Andrews C, Kaufman L. Captive breeding programmes and their role in fish conservation. In: Olney PJS, Mace GM, Feistner ATC (eds). Creative Conservation: Interactive Management of Wild and Captive Animals. Chapman & Hall, London. 1994; 338–351.

    Google Scholar 

  5. Maehata M. Circumstances and problems in preservation at aquarium. In: Nagata Y, Hosoya K (eds). Circumstances in Endangered Japanese Freshwater Fishes and Their Protection. Midori-shobo, Tokyo, 1997; 205–217.

    Google Scholar 

  6. Hedrick PW, Brussard PF, Allendorf FW, Beardmore JA, Orzack S. Protein variation, fitness, and captive propagation. Zoo Biol. 1986; 5: 91–99.

    Article  Google Scholar 

  7. Fiumera AC, Parker PG, Fuerst PA. Effective population size and maintenance of genetic diversity in captive-bred populations of a Lake Victoria cichlid. Conserv. Biol. 2000; 14: 886–892.

    Article  Google Scholar 

  8. IUCN/SSC Re-introduction Specialist Group. Guidelines for Re-introductions. IUCN, Gland and Cambridge. 1998.

    Google Scholar 

  9. Nakamura M. Cyprinid Fishes of Japan. Research Institute of Natural Resources, Tokyo, 1969.

    Google Scholar 

  10. Nakamura T. Actual state of miyako tanago Tanakia tanago. Bull. Tochigi Pref. Fish. Exp. Stn. 1994; 38: 12–18.

    Google Scholar 

  11. Arai R. Tanakia tanago. In: Ministry of Environment (ed.). Threatened Wildlife of Japan — Red Data Book, 2nd edn. Japan Wildlife Research Center, Tokyo. 2003; 40–41.

    Google Scholar 

  12. Ministry of the Environment. National Strategy of Japan on Biological Diversity. Government of Japan, Tokyo. 1995.

    Google Scholar 

  13. Hosoya K. Protection of freshwater fishes in terms of biodiversity. In: Nagata Y, Hosoya K (eds). Circumstances in Endangered Japanese Freshwater Fishes and Their Protection. Midori-shobo, Tokyo. 1997; 315–329.

    Google Scholar 

  14. Kubota H, Watanabe K. Genetic diversity in wild and reared populations of the Japanese bitterling Tanakia tanago (Cyprinidae). Ichthyol. Res. 2003; 50: 123–128.

    Article  Google Scholar 

  15. Gottelli D, Sillero-Zubiri C, Applebaum GD, Roy MS, Girman DJ, Garcia-Moreno J, Ostrander EA, Wayne RK. Molecular genetics of the most endangered canid: the Ethiopian wolf Canis simensis. Mol. Ecol. 1994; 3: 301–312.

    Article  PubMed  CAS  Google Scholar 

  16. O’Brien SJ. Genetic and phylogenetic analyses of endangered species. Annu. Rev. Genet. 1994; 28: 467–489.

    Article  PubMed  Google Scholar 

  17. Taylor AC, Sherwin WB, Wayne RK. Genetic variation of microsatellite loci in a bottlenecked species: the northern hairy-nosed wombat Lasiorhinus krefftii. Mol. Ecol. 1994; 3: 277–290.

    Article  PubMed  CAS  Google Scholar 

  18. Frankham R. Relationship of genetic variation to population size in wildlife. Conserv. Biol. 1996; 10: 1500–1508.

    Article  Google Scholar 

  19. Nei M. Molecular Evolutionary Genetics. Columbia University Press, New York. 1987.

    Google Scholar 

  20. Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijter A, Pot J, Peleman J, Kuiper M, Zabeau M. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 1995; 23: 4407–4414.

    Article  PubMed  CAS  Google Scholar 

  21. Liu Z, Nichols A, Li P, Dunham RA. Inheritance and usefulness of AFLP markers in channel catfish (Ictalurus punctatus), blue catfish (I. furcatus), and their F1, F2, and backcross hybrids. Mol. Gen. Genet. 1998; 258: 260–268.

    Article  PubMed  CAS  Google Scholar 

  22. Kakehi Y, Nakayama K, Watanabe K, Nishida M. Inheritance of amplified fragment length polymorphism markers and their utility in population genetic analysis of Plecoglossus altivelis. J. Fish Biol. 2005; 66: 1529–1544.

    Article  CAS  Google Scholar 

  23. Lynch M, Milligan BG. Analysis of population genetic structure with RAPD markers. Mol. Ecol. 1994; 3: 91–99.

    Article  PubMed  CAS  Google Scholar 

  24. Zhivotovsky LA. Estimating population structure in diploids with multilocus dominant DNA markers. Mol. Ecol. 1999; 8: 907–913.

    Article  PubMed  CAS  Google Scholar 

  25. Borowsky RL. Estimating nucleotide diversity from random amplified polymorphic DNA and amplified fragment length polymorphism data. Mol. Phylogenet. Evol. 2001; 18: 143–148.

    Article  PubMed  CAS  Google Scholar 

  26. Borowsky RL, Vidthayanon C. Nucleotide diversity in populations of balitorid cave fishes from Thailand. Mol. Ecol. 2001; 10: 2799–2805.

    PubMed  CAS  Google Scholar 

  27. Vekemans X. AFLP-SURV version 1.0. Laboratoire de Génétique et Ecologie Végétale, Université Libre de Bruxelles, Brussels. 2002.

    Google Scholar 

  28. Kawamura K, Nagata Y, Ohtaka H, Kanoh Y, Kitamura J. Genetic diversity in the Japanese rosy bitterling, Rhodeus ocellatus kurumeus (Cyprinidae). Ichthyol. Res. 2001; 48: 369–378.

    Article  Google Scholar 

  29. Ohnaka T, Sasaki H, Nagai K, Numachi K. Marked monomorphism at the d-loop region of mtDNA in an endangered species Pseudorasbora pumira subsp. sensu Nakamura. Nippon Suisan Gakkaishi 1999; 65: 1005–1009.

    CAS  Google Scholar 

  30. Ikeda M, Taniguchi N. Genetic variation and divergence in populations of ayu Plecoglossus altivelis, including endangered subspecies, inferred from PCR-RFLP analysis of the mitochondrial DNA d-loop region. Fish. Sci. 2002; 68: 18–26.

    Article  CAS  Google Scholar 

  31. Watanabe K, Nishida M. Genetic population structure of Japanese bagrid catfishes. Ichthyol. Res. 2003; 50: 140–148.

    Article  Google Scholar 

  32. Yamada M, Higuchi M, Goto A. Extensive introgression of mitochondrial DNA found between two genetically divergent forms of the threespine stickleback, Gasterosteus aculeatus, around Japan. Environ. Biol. Fish. 2001; 61: 269–284.

    Article  Google Scholar 

  33. Watanabe K, Mori S, Nishida M. Genetic relationships and origin of two geographic groups of the freshwater threespine stickleback, ‘Hariyo’. Zool. Sci. 2003; 20: 265–274.

    Article  PubMed  CAS  Google Scholar 

  34. Mock KE, Evans RP, Crawford M, Cardall BL, Janecke SU, Miller MP. Rangewide molecular structuring in the Utah sucker (Catostomus ardens). Mol. Ecol. 2006; 15: 2223–2238.

    Article  PubMed  CAS  Google Scholar 

  35. Chen D, Zhang C, Lu C, Chang Y, Chang J. Amplified fragment length polymorphism analysis to identify the genetic structure of the Gymnocypris przewalskii (Kessler, 1876) population from the Qinghai Basin, China. J. Appl. Ichthyol. 2005; 21: 178–183.

    Article  CAS  Google Scholar 

  36. Birky CW, Maruyama T, Fuerst P. An approach to population and evolutionary genetic theory for genes in mitochondria and chloroplasts, and some results. Genetics 1983; 103: 513–527.

    PubMed  Google Scholar 

  37. Mundy NI, Winchell CS, Burr T, Woodruff DS. Microsatellite variation and microevolution in the critically endangered San Clemente Island loggerhead shrike (Lanius ludovicianus mearnsi). Proc. R. Soc. Lond. B 1997; 264: 869–875.

    Article  Google Scholar 

  38. Dawson DA, Burland TM, Douglas A, Le Comber S, Bradshaw M. Isolation of microsatellite loci in the freshwater fish, the bitterling Rhodeus sericeus (Teleostei: Cyprinidae). Mol. Ecol. Notes 2003; 3: 199–202.

    Article  CAS  Google Scholar 

  39. Iguchi K, Watanabe K, Nishida M. Reduced mitochondrial DNA variation in hatchery populations of ayu (Plecoglossus altivelis) cultured for multiple generations. Aquaculture 1999; 178: 235–243.

    Article  CAS  Google Scholar 

  40. Ikeda M, Takagi S, Taniguchi N. Relationships between genetic diversity and number of successive generations in hatchery populations of ayu Plecoglossus altivelis assessed by microsatellite DNA polymorphism. Nippon Suisan Gakkaishi 2005; 71: 768–774.

    Article  CAS  Google Scholar 

  41. Schönhuth S, Luikart G, Doadrio I. Effects of a founder event and supplementary introductions on genetic variation in a captive breeding population of the endagered Spanish killifish. J. Fish Biol. 2003; 63: 1538–1551.

    Article  Google Scholar 

  42. Leberg PL. Strategies for population reintroduction: effects of genetic variability on population growth and size. Conserv. Biol. 1993; 7: 194–199.

    Article  Google Scholar 

  43. Quattro JM, Vrijenhoek RC. Fitness differences among remnant populations of the endangered Sonoran topminnow. Science 1989; 245: 976–978.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hitoshi Kubota.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kubota, H., Watanabe, K., Kakehi, Y. et al. An assessment of genetic diversity in wild and captive populations of endangered Japanese bitterling Tanakia tanago (Cyprinidae) using amplified fragment length polymorphism (AFLP) markers. Fish Sci 74, 494–502 (2008). https://doi.org/10.1111/j.1444-2906.2008.01551.x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1111/j.1444-2906.2008.01551.x

Key Words

Navigation