Skip to main content
Log in

Carbonic anhydrase and Na/K-ATPase activities at different molting stages of the giant freshwater prawn Macrobrachium rosenbergii

  • Published:
Fisheries Science Aims and scope Submit manuscript

Abstract

In the present study, the role of carbonic anhydrase (CA) and Na/K-ATPase in the gill and epidermal tissues in the giant freshwater prawn Macrobrachium rosenbergii was examined as a function of molting stage. CA activity levels in the front and back gills were low at the intermolt stage C0, but increased significantly at premolt stage D3, and then decreased after molting. In the epidermal tissue, activity levels decreased gradually towards premolt to a minimum level at stage D3, but became elevated at postmolt stages A and B. Na/K-ATPase levels in the front and back gills did not change significantly during the molt cycle. CA in the gill is possibly involved in supplying counter-ions for ion uptake, while CA in the epidermal tissue may play a role in mineralizing the exoskeleton after ecdysis. Na/K-ATPase in the gills may function in ion uptake from the ambient medium; however, since its activity was not influenced by the molt cycle, it probably does not have a major role in osmoregulation in the freshwater environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Meldrum NU, Roughton FJW. Carbonic anhydrase, its preparation and properties. J. Physiol. 1933; 80: 113–142.

    PubMed  CAS  Google Scholar 

  2. Tashian RE, Hewett-Emmett D (eds). The biology and chemistry of the carbonic anhydrases. N. Y. Acad. Sci. New York 1984; 429: 525–527.

    Google Scholar 

  3. Henry RP, Swenson ER. The distribution and physiological significance of carbonic anhydrase in vertebrate gas exchange organs. Res. Physiol. 2000; 12: 1–12.

    Article  Google Scholar 

  4. Henry RP. Multiple functions of carbonic anhydrase in the crustacean gill. J. Exp. Zoolog. 1988; 248: 19–24.

    Article  CAS  Google Scholar 

  5. Bottcher K, Siebers D. Biochemistry, localization and physiology of carbonic anhydrase in the gills of euryhaline crabs. J. Exp. Zoolog. 1993; 265: 397–409.

    Article  Google Scholar 

  6. Towle DW, Paulsen RS, Weihrauch D, Kordylewski M, Salvador C, Lignot JH, Spanings-Pierrot C. Na-ATPase in gills of the blue crab Callinectes sapidus: cDNA sequencing and salinity-related expression of α-subunit mRNA and protein. J. Exp. Biol. 2001; 204: 4005–4012.

    PubMed  CAS  Google Scholar 

  7. Henry RP, Garrelts EE, McCarty MM, Towle DW. Differential induction of branchial carbonic anhydrase and Na/KATPase activity in the euryhaline crab, Carcinus maenas, in response to low salinity exposure. J. Exp. Zoolog. 2002; 292: 595–603.

    Article  CAS  Google Scholar 

  8. Lucu C, Towle DW. Na+K+ATPase in gills of aquatic Crustacea. Comp. Biochem. Physiol. C 2003; 135: 195–214.

    Google Scholar 

  9. Henry RP. Subcellular distribution of carbonic anhydrase activity in the gills of the blue crab, Callinectes sapidus. J. Exp. Zoolog. 1988; 245: 1–8.

    Article  CAS  Google Scholar 

  10. Henry RP, Cameron JN. The role of carbonic anhydrase in respiration, ion regulation and acid-base balance in the aquatic crab Callinectes sapidus and the terrestrial crab Gecarcinus lateralis. J. Exp. Biol. 1983; 103: 205–223.

    CAS  Google Scholar 

  11. Roer RD, Dillaman RM. The structure and calcification of the crustacean cuticle. Am. Zool. 1984; 24: 893–909.

    CAS  Google Scholar 

  12. Greenaway P. Calcium balance and moulting in the crustacean. Biol. Rev. 1985; 60: 425–454.

    Article  CAS  Google Scholar 

  13. Wilder MN, Ikuta K, Atmomarsono M, Hatta T, Komuro K. Changes in osmotic and ionic concentrations in the hemolymph of Macrobrachium rosenbergii exposed to varying salinities and correlation to ionic and crystalline composition of the cuticle. Comp. Biochem. Physiol. A 1998; 119: 941–950.

    Article  Google Scholar 

  14. Freire CA, Cavassin F, Rodrigues EN, Torres AH, McNamara JC. Adaptive patterns of osmotic and ionic regulation, the invasion of freshwater by the Palaemonid shrimps. Comp. Biochem. Physiol. A 2003; 136: 771–778.

    Article  Google Scholar 

  15. Wilder MN, Huong DTT, Atmomarsono M, Hien TTT, Phu TQ, Yang W-J. Characterization of Na/K-ATPase in Macrobrachium rosenbergii and the effects of changing salinity on enzymatic activity. Comp. Biochem. Physiol. A 2001; 25: 377–388.

    Google Scholar 

  16. Brion LP, Schwartz JH, Zavilowitz BJ, Schwartz GJ. Micromethod for the measurement of carbonic anhydrase activity in cellular homogenates. Anal. Biochem. 1988; 175: 289–297.

    Article  PubMed  CAS  Google Scholar 

  17. Huong DTT, Jayasankar V, Jasmani S, Saido-Sakanaka H, Wigginton AJ, Wilder MN. Na/K-ATPase activity during larval development in the giant freshwater prawn Macrobrachium rosenbergii and the effects of salinity on survival rates. Fish. Sci. 2004; 70: 518–520.

    Article  CAS  Google Scholar 

  18. Greenaway P. Freshwater invertebrates. In: Maloiy GMO (ed.). Comparative Physiology of Osmoregulation in Animals. Academic Press, London. 1979; 1: 117–173.

    Google Scholar 

  19. Huong DTT. Physiological studies on molting and osmoregulation in the giant freshwater prawn, Macrobrachium rosenbergii and the whiteleg shrimp, Liptopenaeus vannamei. PhD Thesis. The University of Tokyo, Tokyo. 2006.

    Google Scholar 

  20. Giraud MM. Carbonic anhydrase activity in the integument of the crab Carcinus maenas during the intermolt cycle. Comp. Biochem. Physiol. A 1981; 69: 381–387.

    Article  Google Scholar 

  21. Henry RP, Kormanik GA. Carbonic anhydrase activity and calcium deposition during the molt cycle of the blue crab, Callinectes sapidus. J. Crust. Biol. 1985; 5: 234–241.

    Article  CAS  Google Scholar 

  22. Towle DW, Mangum CP. Ionic regulation and transport ATPase activities during the molt cycle in the blue crab Callinectes sapidus. J. Crust. Biol. 1985; 1: 216–222.

    Article  Google Scholar 

  23. Meyran JC, Graf F. Ultrahistochemical localization of Na+−K+ ATPase, Ca2+-ATPase and alkaline phosphatase activity in a calcium-transporting epithelium of a crustacean during moulting. Histochem. Cell Biol. 1986; 85: 313–320.

    Article  CAS  Google Scholar 

  24. Péqueux A. Osmotic regulation in crustaceans. J. Crust. Biol. 1995; 15: 17–34.

    Article  Google Scholar 

  25. Zare S, Greenaway P. Ion transport and the effect of moulting in the freshwater crayfish Cherax destructor (Decapoda: Parastacidae). Aust. J. Zool. 1997; 45: 539–551.

    Article  Google Scholar 

  26. Weihrauch D, Ziegler A, Siebers D, Towle DW. Molecular characterization of V-Type H+-ATPase (B-subunit) in gills of euryhaline crabs and its physiological in osmoregulatory ion uptake. J. Exp. Biol. 2001; 204: 25–37.

    PubMed  CAS  Google Scholar 

  27. Genovese G, Ortiz N, Urcola MR, Luquet CM. Possible role of carbonic anhydrase, V-H+-ATPase, and Cl/HCO3 exchanger in electrogenic ion transport across the gills of the euryhaline crab Chasmagnathus granulatus. Comp. Biochem. Physiol. A 2005; 142: 362–369.

    Article  CAS  Google Scholar 

  28. Zare S, Greenaway P. The effect of moulting and sodium depletion on sodium transport and the activities of Na+K+ATPase, and V-ATPase in the freshwater crayfish Cherax destructor (Crustacea: Parastacidae). Comp. Biochem. Physiol. A 1998; 119: 739–745.

    Google Scholar 

  29. Morris S. Neuroendocrine regulation of osmoregulation and the evolution of air-breathing in decapod crustaceans. J. Exp. Biol. 2001; 204: 979–989.

    PubMed  CAS  Google Scholar 

  30. Spannings-Pierrot C, Soyez D, Van Herp F, Gompel M, Skaret G, Grousset E, Charmantier G. Involvement of crustacean hyperglycemic hormone in the control of gill ion transport in the crab Pachygrapsus marmoratus. Gen. Comp. Endocrinol. 2000; 119: 340–350.

    Article  Google Scholar 

  31. Lovett DL, Verzi MP, Clifford PD, Borst DW. Hemolymph levels of methyl farnesoate increase in response to osmotic stress in the green crab Carcinus maenas. Comp. Biochem. Physiol. A 2001; 128: 299–306.

    Article  CAS  Google Scholar 

  32. Lovett DL, Tanner CA, Glomski K, Ricart TM, Borst DW. The effect of seawater composition and osmolality on hemolymph levels of methyl farnesoate in the green crab Carcinus maenas. Comp. Biochem. Physiol. A 2006; 143: 67–77.

    Article  Google Scholar 

  33. Wheatly MG, Henry RP. Branchial and antennal gland Na/K-ATPase dependent ATPase and carbonic anhydrase activity during salinity acclimation of the euryhaline crayfish Pacifastacus leniusculus. J. Exp. Biol. 1987; 133: 73–86.

    CAS  Google Scholar 

  34. Towle DW. Sodium transport systems in gills. In: Kinne RKH, Kinne-Safran E, Beyenbach KW (eds). Comparative Aspects of Sodium Cotransport Systems. Karger, Basel. 1990, 241–263.

    Google Scholar 

  35. Towle DW, Weihrauch D. Osmoregulation by gills of euryhaline crabs: molecular analysis of transporters. Am. Zool. 2001; 41: 770–780.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcy N Wilder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jasmani, S., Jayasankar, V. & Wilder, M.N. Carbonic anhydrase and Na/K-ATPase activities at different molting stages of the giant freshwater prawn Macrobrachium rosenbergii . Fish Sci 74, 488–493 (2008). https://doi.org/10.1111/j.1444-2906.2008.01550.x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1111/j.1444-2906.2008.01550.x

Key words

Navigation