Skip to main content

Advertisement

Log in

Assessing bottom structure influence on fish abundance in a marine hill by using conjointly acoustic survey and geographic information system

  • Published:
Fisheries Science Aims and scope Submit manuscript

Abstract

Acoustic survey and a geographic information system (GIS) were used conjointly to estimate the significance of bottom substrate to explain fish abundance distribution in the complex topography context of a marine hill. The survey was conducted in the Hachirigase hill, off southwestern Honshu Island in the Sea of Japan. Analysis of acoustic data focused on a 10-m thick layer beginning at the bottom, assuming that bottom influence does not exceed this distance. Area backscattering strength (S a ) values were rescaled in order to reflect real differences before being analyzed. Results show that the influence of the different parameters taken into account (bottom depth, bottom substrate and water temperature) varies widely from one place to another. Bottom substrate is above all important in the zone located to the west of the peak. The kriging and stratification methods were applied to the S a distribution for estimating the total S a in the hill. Differences between results are discussed. Conjoint use of acoustic survey and GIS is an effective method for analyzing and estimating fish abundance distribution in a marine hill.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Daskalov GM, Boyer DC, Roux JP. Relating sardine Sardinops sagax abundance to environmental indices in northern Benguela. Prog. Oceanogr. 2003; 59: 257–274.

    Article  Google Scholar 

  2. Paramo J, Quiñones RA, Ramirez A, Wiff R. Relationship between abundance of small pelagic fishes and environmental factors in the Colombian Caribbean Sea: an analysis based on hydroacoustic information. Aquat. Living Resour. 2003; 16: 239–245.

    Article  Google Scholar 

  3. Bertrand S, Díaz E, Ñiquen M. Interactions between fish and fisher’s spatial distribution and behaviour: an empirical study of the anchovy (Engraulis ringens) fishery of Peru. ICES J. Mar. Sci. 2004; 61: 1127–1136.

    Article  Google Scholar 

  4. Zhang CI, Lee JB, Seo YI, Yoon SC, Kim S. Variations in the abundance of fisheries resources and ecosystem structure in the Japan/East Sea. Prog. Oceanogr. 2004; 61: 245–265.

    Article  Google Scholar 

  5. Akin S, Buhan E, Winemiller KO, Yilmaz H. Fish assemblage structure of Koycegiz Lagoon-Estuary, Turkey: spatial and temporal distribution patterns in relation to environmental variation. Estuar. Coast. Shelf Sci. 2005; 64: 671–684.

    Article  Google Scholar 

  6. Komatsu T, Sugimoto T, Ishida K, Itaya K, Mishra P, Miura T. Importance of the Shatsky Rise Area in the Kuroshio Extension as an offshore nursery ground for Japanese anchovy (Engraulis japonicus) and sardine (Sardinops melanostictus). Fish. Oceanogr. 2002; 11: 354–360.

    Article  Google Scholar 

  7. Menard HW. Marine Geology of the Pacific. International Series in the Earth Sciences, McGraw-Hill, New York. 1964.

    Google Scholar 

  8. Rogers AD. The biology of seamounts. Adv. Mar. Biol. 1994; 30: 305–350.

    Article  Google Scholar 

  9. International Hydrographic Organization and Intergovernmental Oceanographic Commission. Standardization of Undersea Feature Names. Guidelines Proposal Form Terminology, International Hydrographic Bureau, Monaco. 2001.

    Google Scholar 

  10. Hamano A, Nomura K. A preliminary survey of marine living resources around Hachiri-ga-se off Mishima, Hagi, Japan. Proceedings of Techno-Ocean 2002, Techno-Ocean Network Kobe, Japan. CD-ROM. Daishin Planning, Kobe. 2002.

    Google Scholar 

  11. Cooke K, Kieser R, Stanley RD. Acoustic observation and assessment of fish in high-relief habitats. ICES J. Mar. Sci. 2003; 60: 658–661.

    Article  Google Scholar 

  12. Koslow JA, Gowlett-Holmes K, Lowry JK, O’Hara T, Poore GCB, Williams A. Seamount benthic macrofauna off southern Tasmania: community structure and impacts of trawling. Mar. Ecol. Prog. Ser. 2001; 213: 111–125.

    Article  Google Scholar 

  13. MacLennan DN, Simmonds EJ. Fisheries Acoustics. Chapman & Hall, London. 1992.

    Google Scholar 

  14. Kloser RJ. Improved precision of acoustic surveys of benthopelagic fish by means of a deep-towed transducer. ICES J. Mar. Sci. 1996; 53: 407–413.

    Article  Google Scholar 

  15. Lawson GL, Rose GA. The importance of detectability to acoustic surveys of semi-demersal fish. ICES J. Mar. Sci. 1999; 56: 370–380.

    Article  Google Scholar 

  16. Stanley RD, Kieser R, Leaman BM, Cooke K. Diel vertical migration by yellowtail rockfish (Sebastes flavidus) and its impact on acoustic biomass estimation. Fish. Bull. 1999; 97: 322–331.

    Google Scholar 

  17. Stanley RD, Kieser R, Cooke K, Surry AM, Mose B. Estimation of a widow rockfish (Sebastes entomelas) shoal off British Columbia, Canada, as a joint exercise between stock assessment staff and the fishing industry. ICES J. Mar. Sci. 2000; 57: 1035–1049.

    Article  Google Scholar 

  18. Meaden GJ. Potential for geographical information system (GIS) in fisheries management. In: Megrey BA Moksness E (eds). Computers in Fisheries Research, Chapman & Hall, London. 1996; 41–79.

    Google Scholar 

  19. Kapetsky JM, McGregor L, Nanne HE. A Geographical Information System to Plan for Aquaculture. A FAO-UNEP/GRID study in Costa Rica. FAO Fisheries Technical Paper No. 287. FAO, Rome. 1987.

    Google Scholar 

  20. Wright R, Ray S, Green DR, Wood M. Development of a GIS of the Moray Firth (Scotland, UK) and its application in environmental management. Sci. Total Environ. 1998; 23: 65–76.

    Article  Google Scholar 

  21. Tseng CT, Chen SC, Huang CS, Liu CC. GIS-assisted site selection for artificial reefs. Fish. Sci. 2001; 67: 1015–1022.

    Article  Google Scholar 

  22. Woodhouse S, Lovett A, Dolman P, Fuller R. Using a GIS to select priority area for conservation. Comput. Environ. Urban Syst. 2000; 24: 79–93.

    Article  Google Scholar 

  23. Zharikov Y, Skilleter GA, Loneragan NR, Taranto T, Cameron BE. Mapping and characterising subtropical estuarine landscapes using aerial photography and GIS for potential application in wildlife conservation and management. Biol. Conservation 2005; 125: 87–100.

    Article  Google Scholar 

  24. Komatsu T, Igarashi C, Tatsukawa K, Sultana S, Matsuoka Y, Harada S. Use of multi-beam sonar to map seagrass beds in Otsuchi Bay, on the Sanriku Coast of Japan. Aquat. Living Resour. 2003; 16: 223–230.

    Article  Google Scholar 

  25. Komatsu T, Ben Mustapha K, Shibata K, Hantani K, Ohmura T, Sammari C, Igarashi C, El Abed A. Mapping Posidonia meadows on Messioua Bank off Zarzis, Tunisia, using multibeam sonar and GIS. In: Nishida T, Kaiola PJ, Hollingworth CE (eds). GIS/Spatial Analyses in Fisheries and Aquatic Sciences Volume 2. Fishery-Aquatic GIS Research Group, Kawagoe. 2004; 83–100.

    Google Scholar 

  26. Sagawa T, Mikami A, Komatsu T, Kosaka N, Kosako A, Miyazaki A, Takahashi M. Mapping seagrass beds in Funakoshi Bay (Sanriku Coast, Japan), by high precision multispectral image of IKONOS and side scan sonar technique. In: Nishida T, Kaiola PJ, Caton CA (eds). GIS/Spatial Analyses in Fisheries and Aquatic Sciences Volume 3. Fishery-Aquatic GIS Research Group, Kawagoe. 2007; 85–96.

    Google Scholar 

  27. Komatsu T, Sagawa T, Mikami A. Distribution and ecological roles of seagrass in the tidal flat ecosystem. Global Environ. 2006; 11: 207–213 (in Japanese).

    Google Scholar 

  28. Komatsu T, Matsuoka Y, Shibata K, Ikemori T, Ohkei N. Mapping and quantifying a Sargassum forest off Ossaka (Toyama Bay, the Sea of Japan) by using narrow multibeam sonar and GIS. In: Nishida T, Kaiola PJ, Caton CA (eds). GIS/Spatial Analyses in Fisheries and Aquatic Sciences Volume 3. Fishery-Aquatic GIS Research Group, Kawagoe. 2007; 97–114.

    Google Scholar 

  29. Mikami A, Komatsu T, Aoki M, Sagawa T. Biomass estimation of a mixed-species Sargassum forest using aerial photography, field survey and Geographical Information Systems. In: Nishida T, Kaiola PJ, Caton CA (eds). GIS/ Spatial Analyses in Fisheries and Aquatic Sciences Volume 3. Fishery-Aquatic GIS Research Group, Kawagoe. 2007; 147–160.

    Google Scholar 

  30. Komatsu T, Tatsukawa K, Filippi JB, Sagawa T, Matsunaga D, Mikami A, Ishida K, Ajisaka T, Tanaka K, Aoki M, Wang WD, Liu HF, Zhang SY, Zhou MD, Sugimoto T. Distribution of drifting seaweeds in eastern East China Sea. J. Mar. Syst. 2007; 67: 245–252.

    Article  Google Scholar 

  31. Komatsu T, Matsunaga D, Mikami A, Sagawa T, Boisnier E, Tatsukawa K, Aoki M, Ajisaka T, Uwai S, Tanaka K, Ishida K, Tanoue H, Sugimoto T. Abundance of drifting seaweeds in eastern East China Sea. J. Appl. Phycol. in press. DOI 10.1007/s10811-007-9302-4.

  32. Paw JN, Diamante DAD, Robles NA, Chua TE, Quitos LN, Cargamento AGA. Site Selection for Brackishwater Aquaculture Development and Mangrove Reforestation in Lingayen Gulf, Philippines Using Geographic Information Systems. Canadian Conference on GIS, Ottawa. 1992.

  33. Caddy JF, Carocci F. The spatial allocation of fishing intensity by port-based inshore fleets: a GIS application. ICES J. Mar. Sci. 1999; 56: 388–403.

    Article  Google Scholar 

  34. Komatsu T, Takahashi M, Ishida K, Suzuki T, Hiraishi T, Tameishi H. Mapping aquaculture facilities in Yamada Bay in Sanriku Coast, Japan, by IKONOS satellite imagery. Fish. Sci. 2002; 68 (Suppl. 1): 584–587.

    Google Scholar 

  35. Collins N, Hurlbut S. Environmental Risk Analysis of Salvaging the Irving Whale, GIS’93. FAO, Rome. 1993.

    Google Scholar 

  36. Perez OM, Telfer TC, Beveridge MCM, Ross LG. Geographical Information Systems (GIS) as a simple tool to aid modelling of particulate waste distribution at marine fish cage sites. Estuar. Coast. Shelf Sci. 2002; 54: 761–768.

    Article  CAS  Google Scholar 

  37. Komatsu T, Nakaoka M, Kawai H, Yamamoto T, Marine Life Research Group of Takeno, Ohwada K. Impacts of the Nakhodka heavy-oil spill on an intertidal ecosystem: an approach to impact evaluation using geographical information system. Mar. Pollut. Bull. 2003; 47: 99–104.

    Article  CAS  Google Scholar 

  38. Lo CP, Hutchinson WT. Determination of turbidity patterns of the Zhujiang estuarine region, South China, using satellite images and a GIS approach. Geocarto Int. 1991; 3: 27–38.

    Article  Google Scholar 

  39. Legault JA. Using a geographic information system to evaluate the effects of shellfish closure zones on shellfish leases, aquaculture and habitat availability. Can. Tech. Rep. Fish. Aquat. Sci. 1990; 1882E: 4–10.

    Google Scholar 

  40. Hansen WJ, Goldsmith V, Clarke KC, Bokuniewicz H. A marine GIS examines dredging and wetland operations in the New York Bight. Geo. Info. Syst. 1992; 2: 52–56.

    Google Scholar 

  41. Scholz A, Bonzon K, Fujita R, Benjamin N, Woodling N, Black P, Steinback C. Participatory socioeconomic analysis: drawing on fishermen’s knowledge for marine protected area planning in California. Mar. Policy 2004; 28: 335–349.

    Article  Google Scholar 

  42. Katoh O. Structure of Tsushima Current in the southwestern Japan Sea. J. Oceanogr. 1994; 50: 317–338.

    Article  Google Scholar 

  43. Hase H, Yoon JH, Koterayama W. The current structure of the Tsushima warm current along the Japanese coast. J. Oceanogr. 1999; 55: 217–235.

    Article  Google Scholar 

  44. Tanoue H, Hamano A, Komatsu T, Boisnier E. The efficient coupling of GIS and acoustic survey in mapping fish abundance around a hill: the Hachirigase case study. In: Nishida T, Kailola PJ, Hollingworth CE (eds). GIS/Spatial Analyses in Fishery and Aquatic Science, Vol. 3. Fishery Research Group, Kawagoe, 2007: 115–128.

    Google Scholar 

  45. Aglen A. Random errors of acoustic fish abundance estimates in relation to the survey grid density applied. FAO Fish. Rep. 1983; 300: 293–298.

    Google Scholar 

  46. Aglen A. Empirical results on precision effort relationships for acoustic surveys. In: Simmonds EJ, Williamson NJ, Gerlotto F, Aglen A. (eds). Acoustic Survey Design and Analysis Procedure, a Comprehensive Review of Current Practice. ICES Cooperative Research Report 187. ICES, Copenhagen, 1992.

    Google Scholar 

  47. Foote KG, MacLennan DN. Comparison of copper and tungsten carbide calibration spheres. J. Acoust. Soc. Am. 1984; 75: 612–616.

    Article  Google Scholar 

  48. Simard Y, McQuinn I, Montminy M, Lang C, Miller D, Stevens C, Wiggins D, Marchalot C. Description of the HAC standard format for raw and edited acoustic data, version 1.0. Can. Tech. Rep. Fish. Aquat. Sci. 1997; 2174: 1–65.

    Google Scholar 

  49. ICES Fisheries Technology Committee 2003. Report of the Planning Group on the HAC Data Exchange Format. ICES, Bergen. 2003.

    Google Scholar 

  50. Hamano A, Tanoue H, Kieser R. The three-dimensional GIS using sonar information for costal fisheries. ICES Annual Science Conference 20–24 September 2005. ICES, Copenhagen. 2005.

    Google Scholar 

  51. Tamura H. Computer Image Processing, 3rd edn. Ohmsha, Tokyo, 2002 (in Japanese).

    Google Scholar 

  52. SonarData. SonarData Echoview User’s Manual. SonarData Tasmania Pty. Ltd., Hobart. 2005.

    Google Scholar 

  53. Simmonds EJ, Williamson NJ, Gerlotto F, Aglen A. Acoustic Survey Design and Analysis Procedure, a Comprehensive Review of Current Practice. ICES Cooperative Research Report 187. ICES. Copenhagen. 1992.

    Google Scholar 

  54. Reid D, Scalabrin C, Petitgas P, Masse J, Aukland R, Carrera P, Georgakarakos S. Standard protocols for the analysis of school based data from echo sounder surveys. Fish. Res. 2000; 47: 125–136.

    Article  Google Scholar 

  55. Burgos JM, Horne JK. Sensitivity analysis and parameter selection for detecting aggregations in acoustic data. ICES J. Mar. Sci. 2007; 64: 160–168.

    Google Scholar 

  56. Zeiler M. Modeling our World. Environmental Systems Research Institute, Copenhagen. 1999.

    Google Scholar 

  57. Japan Hydrographic Association. Basic Maps of the Sea No. 6343-7. Japan Hydrographic Association, Tokyo. 1979.

    Google Scholar 

  58. Japan Hydrographic Association. Basic Maps of the Sea No. 6343-7-S. Japan Hydrographic Association, Tokyo. 1979.

    Google Scholar 

  59. Jolly GM, Hampton I. A stratified random transect design for acoustic surveys of fish stocks. Can. J. Fish. Aquat. Sci. 1990; 47: 1282–1291.

    Article  Google Scholar 

  60. Cressie N. The origins of kriging. Math. Geol. 1990; 22: 239–252.

    Article  Google Scholar 

  61. Johnston K, Jay M, Hoef V, Krivoruchko K, Lucas N. Using ArcGIS Geostatistical Analyst. Environmental Systems Research Institute, Redlands CA. 2001.

    Google Scholar 

  62. Simard Y, Legendre P, Lavoie G, Marcotte D. Mapping, estimating biomass, and optimizing sampling programs for spatially autocorrelated data — case-study of the northern shrimp (Pandalus borealis). Can. J. Fish. Aquat. Sci. 1992; 49: 32–45.

    Article  Google Scholar 

  63. Aoki I, Sugimoto T. Echo survey of distribution and abundance of pelagic fish schools in relation to oceanographic conditions in the costal area of kumano-nada sea. Nippon Suisan Gakkaishi 1988; 54: 1747–1755.

    Google Scholar 

  64. Castillo J, Barbieri MA, Gonzalez A. Relationship between sea surface temperature, salinity, and pelagic fish distribution off northern Chile. ICES J. Mar. Sci. 1996; 53: 139–146.

    Article  Google Scholar 

  65. Reid DG, Maravelias CD. Relationships between herring school distribution and seabed substrate derived from RoxAnn. ICES J. Mar. Sci. 2001; 58: 1161–1173.

    Article  Google Scholar 

  66. Brown CJ, Mitchell A, Limpenny DS, Robertson MR, Service M, Golding N. Mapping seabed habitats in the Firth of Lorn off the west coast of Scotland: evaluation and comparison of habitat maps produced using the acoustic ground-discrimination system, RoxAnn, and sidescan sonar. ICES J. Mar. Sci. 2005; 62: 790–802.

    Article  Google Scholar 

  67. Orlowski A. Acoustic studies of spatial gradients in the Baltic: implications for fish distribution. ICES J. Mar. Sci. 1999; 56: 561–570.

    Article  Google Scholar 

  68. Tonn WM, Magnusson JJ. Patterns in the species composition and richness of fish assemblages in northern Wisconsin lakes. Ecology 1982; 63: 137–154.

    Article  Google Scholar 

  69. McClanahan TR. Kenyan coral reef lagoon fish: effects of fishing, substrate complexity, and sea urchins. Coral Reefs 1994; 13: 231–241.

    Article  Google Scholar 

  70. Harding JM, Mann R. Oyster reefs as fish habitat: opportunistic use of restored reefs by transient species. J. Shellfish Res. 2001: 20: 951–959.

    Google Scholar 

  71. Gratwicke B, Speight MR. Effects of habitat complexity on Caribbean marine fish assemblages. Mar. Ecol. Prog. Ser. 2005; 292: 301–310.

    Article  Google Scholar 

  72. Kawano M. Study of the management of Threeline Grunt (Parapristipoma trilineatum) in coastal waters off Yamaguchi Prefecture. Bull. Yamaguchi Pref. Gaikai Fish. Exp. Stn. 1997; 26: 41–53.

    Google Scholar 

  73. Kimura S, Suzuki K. Maturity and spawning of Parapristipoma trilineatum in Kumano-nada, central Japan. Nippon Suisan Gakkaishi. 1981; 47: 9–16.

    Google Scholar 

  74. Kloser RJ, Koslow JA, Williams A. Acoustic assessment of the biomass of a spawning aggregation of Orange Roughy (Hoplostethus atlanticus, Collett) of South-eastern Australia. 1990–92. Mar. Freshwat. Res. 1996; 47: 1015–1024.

    Article  Google Scholar 

  75. Komatsu T, Mitani I, Ishida K, Inagaki T, Hamano A. Assessment of Beryx splendens biomass around the Nakanba Seamount in Izu Archipelago, Japan, by echosounder. Fish. Sci. 2002; 68: 429–430.

    Google Scholar 

  76. McClatchie S, Coombs RF. Spatial variability of orange roughy around the Northwest Hills on the Chatham Raise, New Zealand. Deep Sea Res. I 2005; 52: 589–603.

    Article  Google Scholar 

  77. Romaine SJ, Mackas DL, Macaulay MC. Comparison of euphausiid population size estimates obtained using replicated acoustic surveys of coastal inlets and block average vs. geostatistical spatial interpolation methods. Fish. Oceanogr. 2002; 11: 102–115.

    Article  Google Scholar 

  78. Sullivan PJ. Stock abundance estimation using depthdependent trends and spatial correlated variation. 1990. Can. J. Fish. Aquat. Sci. 1991; 48: 1691–1703.

    Article  Google Scholar 

  79. Simard Y, Gerlotto F. Exploration of the applicability of geostatistics in fisheries acoustic. CIEM/ICES Working group on Fish. Acoust. Sci. Technol. ICES, Copengahen. 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideaki Tanoue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanoue, H., Hamano, A., Komatsu, T. et al. Assessing bottom structure influence on fish abundance in a marine hill by using conjointly acoustic survey and geographic information system. Fish Sci 74, 469–478 (2008). https://doi.org/10.1111/j.1444-2906.2008.01548.x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1111/j.1444-2906.2008.01548.x

Key words

Navigation