Skip to main content
Log in

Visual acuity of Pacific Saury Cololabis saira for understanding capture process

  • Published:
Fisheries Science Aims and scope Submit manuscript

Abstract

To understand the mechanism of the behavioral response in the capture process of how fish recognize fishing gear and then how they can avoid the gear, the visual acuity of Pacific saury Cololabis saira was investigated by histological examination of the retina of individuals in the size range of 75–365 mm fork length (FL). The contour map of cone density distribution shows that the highest cone density is located in the temporal area of the retina, which indicated the visual axis as the forward direction. The visual acuity (VA) depends both on the focal length of the lens and the number of cones in the retina. The lens diameter increased linearly from 1.40 to 4.73 mm with fish growth, while the cone density decreased gradually from 765 to 378 cells/0.01 mm2. Our results show that the visual acuity increases proportionately from 0.057 to 0.140 for individuals ranging in FL from 75 to 365 mm as expressed by the equation VA=0.0065×FL 0.5271 (r 2=0.9624).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wardle CS. Investigating the behaviour of fish during capture. In: Bailey RS, Parrish BB (eds). Developments in Fisheries Research in Scotland. Fishing News Books Ltd, Farnham. 1987; 139–155.

    Google Scholar 

  2. Wardle CS. Fish reactions to towed fishing gears. In: Mac-Donald AG, Priede IG (eds). Experimental Biology at Sea. Academic Press, New York. 1983; 167–195.

    Google Scholar 

  3. Muntz WRA. Comparative aspects in behavioural studies of vertebrate vision. In: Davson H, Graham LT Jr (eds). Comparative Physiology. Academic Press, New York. 1974; 155–226.

    Google Scholar 

  4. Nicol JAC. Visual abilities. In: Nicol JAC. The Eyes of Fishes. Clarendon Press, Oxford. 1989; 243–256.

    Google Scholar 

  5. Tamura T. A study of visual perception in fish, especially on resolving power and accommodation. Nippon Suisan Gakkaishi 1957; 22: 536–557.

    Google Scholar 

  6. Blaxter JHS, Jones MP. The development of the retina and retinomotor responses in the herring. J. Mar. Biol. Ass. U. K. 1967; 47: 677–697.

    Article  Google Scholar 

  7. Purbayanto A, Akiyama S, Arimoto T. Visual and swimming physiology of Japanese whiting in relation to the capture process of sweeping trammel net. Proceedings of the JSPSDGHE International Symposium on Fisheries Science in Tropical Areas. Bogor Agriculture Institute, Indonesia. TUFJSPS International, Bogor. 2001; 10: 151–155.

    Google Scholar 

  8. Zhang X, Arimoto T. Visual physiology of walleye pollock (Theragra chalcogramma) in relation to capture by trawl nets. ICES Mar. Sci. Symp. 1993; 196: 113–116.

    Google Scholar 

  9. Shiobara Y, Akiyama S, Arimoto T. Developmental changes in the visual acuity of red sea bream Pagrus major. Fish. Sci. 1998; 64: 944–947.

    CAS  Google Scholar 

  10. Miyagi M, Akiyama S, Arimoto T. The development of visual acuity in yellowtail Seriola quinqueradiata. Nippon Suisan Gakkaishi 2001; 67: 455–459.

    Google Scholar 

  11. Zhang X. Visual physiology of fish and its application to trawl gear. PhD Thesis. Tokyo University of Fisheries Tokyo. 1992.

    Google Scholar 

  12. Kawamura G. Fundamental study on application of the vision of spotted mackerel, Pneumatophorus tapeinocephalus (Bleeker), to angling techniques-I. Importance of vision estimated from brain pattern, visual acuity of retina, and accommodation. Nippon Suisan Gakkaishi 1979; 45: 281–286.

    Google Scholar 

  13. Nakamura EL. Visual acuity of yellowfin tuna, Thunnus albacares. FAO Fish. Rep. 1969; 62: 463–468.

    Google Scholar 

  14. Miyazaki T. The change of visual acuity of larvae and juveniles of striped beakperch in accordance with their growth. Nippon Suisan Gakkaishi 1993; 59: 437–444.

    Google Scholar 

  15. Breck JE, Gitter MJ. Effect of fish size on the reactive distance of bluegill sunfish (Lepomis macrochirus). Can. J. Fish. Aquat. Sci. 1983; 40: 162–167.

    Article  Google Scholar 

  16. Takeuchi T, Nakata H, Ueda H, Wada T, Arimoto T, Watabe S, Nakamae A. A Handbook of Fisheries Science. Seibutsu Kenkyusha, Tokyo. 2004.

    Google Scholar 

  17. Arimoto T, Watanabe N, Okamoto N. Retinomotor responses of jack mackerel Trachurus japonicus to light condition. J. Tokyo Univ. Fish. 1988; 75: 333–341.

    Google Scholar 

  18. Tamura Y. Fish vision. In: Kawamoto N (ed.). Fish Physiology. Koseisha-Koseikaku, Tokyo. 1970; 423–451.

    Google Scholar 

  19. Wagner HJ. Retinal structure of fishes. In: Douglas RH, Djamgoz MBA (eds). The Visual System of Fish. Chapman & Hall, London. 1990; 109–157.

    Google Scholar 

  20. Tamura T, Wisby WJ. The visual sense of pelagic fishes especially the visual axis and accommodation. Bull. Mar. Sci. Gulf Caribbean 1963; 13: 433–448.

    Google Scholar 

  21. Ahlbert IB. The organization of the cone cells in the retinae of four teleosts with different feeding habits (Perca fluviatilis L., Lucioperca lucioperca L., Acerina cernua L. and Coregonus albula L.). Ark. Zool. Ser. 1969; 2: 445–481.

    Google Scholar 

  22. Wagner HJ. Cell types and connectivity patterns in mosaic retinas. Adv. Anat. Embryol. Cell Biol. 1978; 55: 1–81.

    Google Scholar 

  23. Waterman TH, Forward RB. Field evidence for polarized light sensitivity in the fish Zenarchopterus. Nature. Lond. 1970; 288: 85–87.

    Article  Google Scholar 

  24. Wagner HJ. Comparative analysis of the patterns of receptor and horizontal cells in teleost fishes. In: Ali MA (ed.). Vision in Fishes, New Approach in Research. Plenum Press, New York. 1975; 517–524.

    Google Scholar 

  25. Shiobara Y, Arimoto T. Behavioural analysis of feeding experiment on visual axis of red sea bream Pagrus major. Nippon Suisan Gakkaishi 1999; 65: 728–731.

    Google Scholar 

  26. Kikuchi K, Asai M, Kuboshima Y, Mitani I, Takizawa T, Okiyama M, Somiya H. Visual accommodation system in the eyes of a berycid deep-sea fish Beryx splendens. Fish. Sci. 1994; 60: 691–694.

    CAS  Google Scholar 

  27. Momose O, Takei S, Maekawa Y, Uchida M, Somiya H. Visual accommodation system and retinal ganglion cell distribution in the retina of a dolphin fish, Coryphaena hippurus. Nippon Suisan Gakkaishi 2003; 69: 933–939.

    Google Scholar 

  28. Kawamura G, Kabayama A, Yonemori T. Horizontal compensatory eye movements in crucian carp Carassius auratus langsdorfi swimming at relatively high speed. Nippon Suisan Gakkaishi 1978; 44: 567–570.

    Google Scholar 

  29. Kawamura G, Nishimura W, Ueda S, Nishi T. Vision in tunas and marlins. Mem. Kagoshima Univ. Res. Center S. Pac. 1981; 1: 3–47.

    Google Scholar 

  30. Kawamura G, Tsuda R., Kumai H, Ohashi S. The visual cell morphology of Pagrus major and its adaptive changes with shift from pelagic to benthic habitats. Nippon Suisan Gakkaishi 1984; 50: 1975–1980.

    Google Scholar 

  31. Imai Y. Biological characters of a remarkable large-sized Pacific saury caught in the southeastern water of Hokkaido. Hokusuishi Kempo 1988; 30: 25–32.

    Google Scholar 

  32. Fukushima S, Watanabe Y, Ogawa Y. Correspondence of spawned season to large, medium, and small size Pacific saury exploited in the northwestern Pacific Ocean. Bull. Tohoku Natl. Fish. Res. Inst. 1990; 52: 17–27.

    Google Scholar 

  33. Suyama S, Kurita Y, Ueno Y. Age structure of Pacific saury Cololabis saira based on observation of the hyaline zones in the otolith and length frequency distributions. Fish. Sci. 2006; 72: 742–749.

    Article  CAS  Google Scholar 

  34. Shiobara Y, Arimoto T. Change in visual acuity and retinal adaptation according to light intensity for red sea bream Pagrus major. Nippon Suisan Gakkaishi 2003; 69: 632–636.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takafumi Arimoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hajar, M.A.I., Inada, H., Hasobe, M. et al. Visual acuity of Pacific Saury Cololabis saira for understanding capture process. Fish Sci 74, 461–468 (2008). https://doi.org/10.1111/j.1444-2906.2008.01547.x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1111/j.1444-2906.2008.01547.x

Key Words

Navigation